Marine anoxia initiates giant sulfur-bacteria mat proliferation and associated changes in 1 benthic nitrogen, sulfur, and iron cycling in the

Abstract

[1]  A. Oschlies,et al.  Biogeochemical feedbacks may amplify ongoing and future ocean deoxygenation: a case study from the Peruvian oxygen minimum zone , 2022, Biogeochemistry.

[2]  T. Treude,et al.  Rapid sulfur cycling in sediments from the Peruvian oxygen minimum zone featuring simultaneous sulfate reduction and sulfide oxidation , 2021, Limnology and Oceanography.

[3]  P. Hall,et al.  In situ incubations with the Gothenburg benthic chamber landers: Applications and quality control , 2021, Journal of Marine Systems.

[4]  E. Achterberg,et al.  The control of hydrogen sulfide on benthic iron and cadmium fluxes in the oxygen minimum zone off Peru , 2019, Biogeosciences.

[5]  M. Wagner,et al.  On the evolution and physiology of cable bacteria , 2019, Proceedings of the National Academy of Sciences.

[6]  F. Meysman,et al.  Cable bacteria promote DNRA through iron sulfide dissolution , 2018, Limnology and Oceanography.

[7]  A. Schramm,et al.  Transient bottom water oxygenation creates a niche for cable bacteria in long‐term anoxic sediments of the Eastern Gotland Basin , 2018, Environmental microbiology.

[8]  M. Altabet,et al.  N2O production and consumption from stable isotopic and concentration data in the Peruvian coastal upwelling system , 2017 .

[9]  F. Meysman,et al.  The impact of electrogenic sulfur oxidation on the biogeochemistry of coastal sediments: a field study , 2016 .

[10]  D. Yoerger,et al.  Autonomous Marine Robotic Technology Reveals an Expansive Benthic Bacterial Community Relevant to Regional Nitrogen Biogeochemistry. , 2016, Environmental science & technology.

[11]  B. Ward,et al.  Long‐term fertilization alters the relative importance of nitrate reduction pathways in salt marsh sediments , 2016 .

[12]  S. Sommer,et al.  Biological nitrate transport in sediments on the Peruvian margin mitigates benthic sulfide emissions and drives pelagic N loss during stagnation events , 2016 .

[13]  T. Treude,et al.  Depletion of oxygen, nitrate and nitrite in the Peruvian oxygen minimum zone cause an imbalance of benthic nitrogen fluxes , 2016 .

[14]  C. Slomp,et al.  Cable bacteria generate a firewall against euxinia in seasonally hypoxic basins , 2015, Proceedings of the National Academy of Sciences.

[15]  T. Treude,et al.  Nitrogen fixation in sediments along a depth transect through the Peruvian oxygen minimum zone , 2015 .

[16]  S. Bograd,et al.  Denitrification and flushing of the Santa Barbara Basin bottom waters , 2015 .

[17]  Prosun Bhattacharya,et al.  Sediment color tool for targeting arsenic-safe aquifers for the installation of shallow drinking water tubewells. , 2014, The Science of the total environment.

[18]  T. Treude,et al.  Organic carbon production, mineralisation and preservation on the Peruvian margin , 2014 .

[19]  M. Kuypers,et al.  The Fate of Nitrate in Intertidal Permeable Sediments , 2014, PloS one.

[20]  S. Sommer,et al.  Benthic nitrogen fluxes and fractionation of nitrate in the Mauritanian oxygen minimum zone (Eastern Tropical North Atlantic) , 2014 .

[21]  A. Corzo,et al.  A fast and direct spectrophotometric method for the sequential determination of nitrate and nitrite at low concentrations in small volumes , 2014 .

[22]  M. Altabet,et al.  A continuous flow isotope ratio mass spectrometry method for high precision determination of dissolved gas ratios and isotopic composition , 2014 .

[23]  A. Schramm,et al.  Electric coupling between distant nitrate reduction and sulfide oxidation in marine sediment , 2014, The ISME Journal.

[24]  B. Jørgensen,et al.  Succession of cable bacteria and electric currents in marine sediment , 2014, The ISME Journal.

[25]  F. Besenbacher,et al.  Filamentous bacteria transport electrons over centimetre distances , 2012, Nature.

[26]  S. Sommer,et al.  Factors influencing the distribution of epibenthic megafauna across the Peruvian oxygen minimum zone , 2012 .

[27]  Stefan Sommer,et al.  Modeling benthic–pelagic nutrient exchange processes and porewater distributions in a seasonally hypoxic sediment: evidence for massive phosphate release by Beggiatoa ? , 2012 .

[28]  M. Graco,et al.  Benthic iron and phosphorus fluxes across the Peruvian oxygen minimum zone , 2012 .

[29]  Hermann W. Bange,et al.  Rates and regulation of nitrogen cycling in seasonally hypoxic sediments during winter (Boknis Eck, SW Baltic Sea): Sensitivity to environmental variables , 2011 .

[30]  M. Kuypers,et al.  Intensive nitrogen loss over the Omani Shelf due to anammox coupled with dissimilatory nitrite reduction to ammonium , 2011, The ISME Journal.

[31]  D. Canfield,et al.  A Cryptic Sulfur Cycle in Oxygen-Minimum–Zone Waters off the Chilean Coast , 2010, Science.

[32]  B. Ward,et al.  Denitrification as the dominant nitrogen loss process in the Arabian Sea , 2009, Nature.

[33]  L. Levin,et al.  Coastal hypoxia and sediment biogeochemistry , 2009 .

[34]  T. Treude,et al.  Biogeochemistry of a deep-sea whale fall: sulfate reduction, sulfide efflux and methanogenesis , 2009 .

[35]  B. Jørgensen,et al.  Physiology and behaviour of marine Thioploca , 2009, The ISME Journal.

[36]  T. I. Volkova,et al.  Intercalibration of Bruevich’s method to determine the total alkalinity in seawater , 2008 .

[37]  J. Sprintall,et al.  Expanding Oxygen-Minimum Zones in the Tropical Oceans , 2008, Science.

[38]  A. Boetius,et al.  Biological and chemical sulfide oxidation in a Beggiatoa inhabited marine sediment , 2007, The ISME Journal.

[39]  M. Altabet,et al.  Sensitive measurement of NH4+ 15N/14N (δ15NH4+) at natural abundance levels in fresh and saltwaters , 2007 .

[40]  J. Bernhard,et al.  Nitrogen cycling in the sediments of Santa Barbara basin and Eastern Subtropical North Pacific: Nitrogen isotopes, diagenesis and possible chemosymbiosis between two lithotrophs (Thioploca and Anammox)—“riding on a glider” , 2006 .

[41]  H. Schulz,et al.  Large Sulfur Bacteria and the Formation of Phosphorite , 2005, Science.

[42]  B. Jørgensen,et al.  A cold chromium distillation procedure for radiolabeled sulfide applied to sulfate reduction measurements , 2004 .

[43]  R. Amann,et al.  Phylogeny and distribution of nitrate-storing Beggiatoa spp. in coastal marine sediments. , 2003, Environmental microbiology.

[44]  D. Sigman,et al.  Distinguishing between water column and sedimentary denitrification in the Santa Barbara Basin using the stable isotopes of nitrate , 2003 .

[45]  S. Bograd,et al.  Bottom water renewal in the Santa Barbara Basin , 2002 .

[46]  L. Levin,et al.  Benthic processes on the Peru margin: a transect across the oxygen minimum zone during the 1997–98 El Niño , 2002 .

[47]  B. Jørgensen,et al.  Ecology of Thioploca spp.: Nitrate and Sulfur Storage in Relation to Chemical Microgradients and Influence ofThioploca spp. on the Sedimentary Nitrogen Cycle , 2001, Applied and Environmental Microbiology.

[48]  W. Horwath,et al.  Acid fumigation of soils to remove carbonates prior to total organic carbon or CARBON‐13 isotopic analysis , 2001 .

[49]  Mikio Sayama Presence of Nitrate-Accumulating Sulfur Bacteria and Their Influence on Nitrogen Cycling in a Shallow Coastal Marine Sediment , 2001, Applied and Environmental Microbiology.

[50]  R. Thunell,et al.  Nitrogen isotope variations in Santa Barbara Basin sediments: Implications for denitrification in the eastern tropical North Pacific during the last 50,000 years , 2000 .

[51]  J. Bernhard,et al.  Dissolved sulfide distributions in the water column and sediment pore waters of the Santa Barbara Basin , 1999 .

[52]  B. Jørgensen,et al.  Dense populations of a giant sulfur bacterium in Namibian shelf sediments. , 1999, Science.

[53]  Manfred Ehrhardt,et al.  Methods of seawater analysis , 1999 .

[54]  R. Thunell Particle fluxes in a coastal upwelling zone: sediment trap results from Santa Barbara Basin, California , 1998 .

[55]  Michael Kühl,et al.  An amperometric microsensor for the determination of H2S in aquatic environments , 1996 .

[56]  D. Canfield,et al.  Porewater pH and authigenic phases formed in the uppermost sediments of the Santa Barbara Basin , 1996 .

[57]  B. Jørgensen,et al.  Community Structure of Filamentous, Sheath-Building Sulfur Bacteria, Thioploca spp., off the Coast of Chile , 1996, Applied and environmental microbiology.

[58]  Per O.J. Hall,et al.  Rapid, small-volume, flow injection analysis for SCO2, and NH4+ in marine and freshwaters , 1992 .

[59]  B. Jørgensen,et al.  Microstructure of diffusive boundary layers and the oxygen uptake of the sea floor , 1990, Nature.

[60]  D. Canfield Reactive iron in marine sediments. , 1989, Geochimica et cosmochimica acta.

[61]  B. Jørgensen Distribution of colorless sulfur bacteria (Beggiatoa spp.) in a coastal marine sediment , 1977 .

[62]  E. Sholkovitz Interstitial water chemistry of the Santa Barbara Basin sediments , 1973 .

[63]  J. Gieskes,et al.  A PHYSICAL‐CHEMICAL STUDY OF THE FLUSHING OF THE SANTA BARBARA BASIN1 , 1971 .

[64]  K. Emery,et al.  INFLUENCE OF TURBIDITY CURRENTS UPON BASIN WATERS , 1962 .

[65]  H. Sverdrup,et al.  Distribution of Diatoms in Relation to the Character of Water Masses and Currents Off Southern California in 1938 , 1939 .

[66]  S. Sommer,et al.  Dissolved benthic phosphate, iron and carbon fluxes in the Mauritanian upwelling system and implications for ongoing deoxygenation , 2019, Deep Sea Research Part I: Oceanographic Research Papers.

[67]  S. Naqvi,et al.  Anaerobic Carbon Mineralisation Through Sulphate Reduction in the Inner Shelf Sediments of Eastern Arabian Sea , 2016, Estuaries and Coasts.

[68]  T. Treude Biogeochemical reactions in marine sediments underlying anoxic water bodies , 2012 .

[69]  M. Altabet,et al.  Sensitive measurement of NH4+ 15N/14N (delta 15NH4+) at natural abundance levels in fresh and saltwaters. , 2007, Analytical chemistry.

[70]  B. Jørgensen,et al.  Sulfide oxidation in marine sediments: Geochemistry meets microbiology , 2004 .

[71]  V. Sharpe,et al.  Competing interests , 2003, Nature Biotechnology.

[72]  R. Glud,et al.  Electrochemical and optical oxygen microsensors for in situ measurements. In in situ monitoring of aquatic systems: Chemical analysis and speciation , 2000 .

[73]  D. Canfield,et al.  Concentration and transport of nitrate by the mat-forming sulphur bacterium Thioploca , 1995, Nature.

[74]  B. Jørgensen,et al.  Microelectrodes: Their Use in Microbial Ecology , 1986 .

[75]  Liu Xinwu This is How the Discussion Started , 1981 .

[76]  H. W. Harvey Marine Microbiology , 1946, Nature.