Some properties of the lower bound of optimal values in interval convex quadratic programming

One of the fundamental problems in interval quadratic programming is to compute the range of optimal values. In this paper, we derive some results on the lower bound of interval convex quadratic programming. We first develop complementary slackness conditions of a quadratic program and its Dorn dual. Then, some interesting and useful characteristics of the lower bound of interval quadratic programming are established based on these conditions. Finally, illustrative examples and remarks are given to get an insight into the problem discussed.

[1]  Milan Vlach,et al.  Satisficing solutions and duality in interval and fuzzy linear programming , 2003, Fuzzy Sets Syst..

[2]  Oleg A. Prokopyev,et al.  Checking solvability of systems of interval linear equations and inequalities via mixed integer programming , 2009, Eur. J. Oper. Res..

[3]  Wei Li,et al.  Checking weak optimality of the solution to linear programming with interval right-hand side , 2014, Optim. Lett..

[4]  Milan Hladı´k Weak and strong solvability of interval linear systems of equations and inequalities , 2013 .

[5]  A. Neumaier Interval methods for systems of equations , 1990 .

[6]  Frantisek Mráz Calculating the exact bounds of optimal valuesin LP with interval coefficients , 1998, Ann. Oper. Res..

[7]  Milan Hladík,et al.  How to determine basis stability in interval linear programming , 2012, Optimization Letters.

[8]  John W. Chinneck,et al.  Linear programming with interval coefficients , 2000, J. Oper. Res. Soc..

[9]  Shiang-Tai Liu,et al.  A numerical solution method to interval quadratic programming , 2007, Appl. Math. Comput..

[10]  Takayuki Ishizaki,et al.  Interval quadratic programming for day-ahead dispatch of uncertain predicted demand , 2016, Autom..

[11]  Wei Li,et al.  Numerical solution method for general interval quadratic programming , 2008, Appl. Math. Comput..

[12]  M. Hladík Optimal value bounds in nonlinear programming with interval data , 2011 .

[13]  Wei Li A note on dependency between interval linear systems , 2015, Optim. Lett..

[14]  W. Dorn Duality in Quadratic Programming... , 2011 .

[15]  Sergey P. Shary,et al.  A New Technique in Systems Analysis Under Interval Uncertainty and Ambiguity , 2002, Reliab. Comput..

[16]  Wei Li,et al.  Strong optimal solutions of interval linear programming , 2013 .

[17]  Cécile Murat,et al.  Linear Programming with interval right handsides June 29 , 2007 , 2007 .

[18]  Jiri Rohn,et al.  Strong solvability of interval linear programming problems , 1981, Computing.

[19]  L. Liu,et al.  An interval nonlinear program for the planning of waste management systems with economies-of-scale effects - A case study for the region of Hamilton, Ontario, Canada , 2006, Eur. J. Oper. Res..

[20]  H. Ishibuchi,et al.  Multiobjective programming in optimization of the interval objective function , 1990 .

[21]  Milan Hladík Optimal value range in interval linear programming , 2009, Fuzzy Optim. Decis. Mak..

[22]  M. Fiedler,et al.  Linear Optimization Problems with Inexact Data , 2006 .

[23]  Xiao Liu,et al.  Generalized solutions to interval linear programmes and related necessary and sufficient optimality conditions , 2015, Optim. Methods Softw..

[24]  Milan Hladík On approximation of the best case optimal value in interval linear programming , 2014, Optim. Lett..

[25]  Milan Hladík Transformations of interval linear systems of equations and inequalities , 2017 .

[26]  Wei Li,et al.  Localized solutions to interval linear equations , 2013, J. Comput. Appl. Math..

[27]  Milan Hladík Interval convex quadratic programming problems in a general form , 2017, Central Eur. J. Oper. Res..

[28]  Wei Li,et al.  New method for computing the upper bound of optimal value in interval quadratic program , 2015, J. Comput. Appl. Math..

[29]  Guohe Huang,et al.  Violation analysis on two-step method for interval linear programming , 2014, Inf. Sci..

[30]  R. Baker Kearfott,et al.  Introduction to Interval Analysis , 2009 .

[31]  Wei Li,et al.  Some results on the upper bound of optimal values in interval convex quadratic programming , 2016, J. Comput. Appl. Math..

[32]  Mokhtar S. Bazaraa,et al.  Nonlinear Programming: Theory and Algorithms , 1993 .