Optimal partial ridge estimation in restricted semiparametric regression models

This paper is concerned with the ridge estimation of the parameter vector β in partial linear regression model y i = x i β + f ( t i ) + ? i , 1 ? i ? n , with correlated errors, that is, when Cov ( ? ) = ? 2 V , with a positive definite matrix V and ? = ( ? 1 , ? , ? n ) , under the linear constraint R β = r , for a given matrix R and a given vector r . The partial residual estimation method is used to estimate β and the function f ( ? ) . Under appropriate assumptions, the asymptotic bias and variance of the proposed estimators are obtained. A generalized cross validation (GCV) criterion is proposed for selecting the optimal ridge parameter and the bandwidth of the kernel smoother. An extension of the GCV theorem is established to prove the convergence of the GCV mean. The theoretical results are illustrated by a real data example and a simulation study.

[1]  Fikri Akdeniz,et al.  Restricted Ridge Estimators of the Parameters in Semiparametric Regression Model , 2009 .

[2]  A. A. Weiss,et al.  Semiparametric estimates of the relation between weather and electricity sales , 1986 .

[3]  Wenyang Zhang,et al.  Optimal zone for bandwidth selection in semiparametric models , 2011 .

[4]  G. Wahba Smoothing noisy data with spline functions , 1975 .

[5]  Michael S. Waterman,et al.  A Restricted Least Squares Problem , 1974 .

[6]  Hu Yang,et al.  Ridge Estimation to the Restricted Linear Model , 2007 .

[7]  D. Gibbons A Simulation Study of Some Ridge Estimators , 1981 .

[8]  H. A. Niroumand,et al.  Ridge regression methodology in partial linear models with correlated errors , 2011 .

[9]  P. Speckman Kernel smoothing in partial linear models , 1988 .

[10]  P. A. V. B. Swamy,et al.  A note on minimum average risk estimators for coefficients in linear models , 1977 .

[11]  J. S. Mehta,et al.  Two methods of evaluating hoerl and kennard's ridge regression , 1978 .

[12]  Yong Zhou,et al.  Statistical inference of partially linear regression models with heteroscedastic errors , 2007 .

[13]  Hongchang Hu Ridge estimation of a semiparametric regression model , 2005 .

[14]  John Fox,et al.  CHANGING SOCIAL ROLES AND FEMALE CRIME IN CANADA: A TIME SERIES ANALYSIS* , 2008 .

[15]  Gene H. Golub,et al.  Generalized cross-validation as a method for choosing a good ridge parameter , 1979, Milestones in Matrix Computation.

[16]  G. S. Watson,et al.  Smooth regression analysis , 1964 .

[17]  Wolfgang Härdle,et al.  Partially Linear Models , 2000 .

[18]  Mohammad Arashi,et al.  Feasible ridge estimator in partially linear models , 2013, J. Multivar. Anal..

[19]  G. C. McDonald,et al.  A Monte Carlo Evaluation of Some Ridge-Type Estimators , 1975 .

[20]  R. Tapia,et al.  Nonparametric Probability Density Estimation , 1978 .

[21]  Gemai Chen,et al.  Semiparametric generalized least squares estimation in partially linear regression models with correlated errors , 2007 .

[22]  Peter Craven,et al.  Smoothing noisy data with spline functions , 1978 .

[23]  E. Nadaraya On Estimating Regression , 1964 .