Calcium channels in vertebrate cells.

Article de synthese a propos des caracteristiques des canaux calciques voltage-sensibles de type L, N ou T dans les muscles squelettiques, le cœur ou les neurones des vertebres

[1]  D. Pietrobon,et al.  Interactions of protons with single open L-type calcium channels. Location of protonation site and dependence of proton-induced current fluctuations on concentration and species of permeant ion , 1989, The Journal of general physiology.

[2]  D. Pietrobon,et al.  Mechanisms of Interaction of Permeant Ions and Protons with Dihydropyridine‐Sensitive Calcium Channels a , 1989, Annals of the New York Academy of Sciences.

[3]  D. Logothetis,et al.  Elementary properties and pharmacological sensitivities of calcium channels in mammalian peripheral neurons , 1989, Neuron.

[4]  P. Hockberger,et al.  A diacylglycerol analogue reduces neuronal calcium currents independently of protein kinase C activation , 1989, Nature.

[5]  N. Dascal,et al.  Specific block of calcium channel expression by a fragment of dihydropyridine receptor cDNA. , 1989, Science.

[6]  R. Coronado,et al.  Opening of dihydropyridine calcium channels in skeletal muscle membranes by inositol trisphosphate , 1988, Nature.

[7]  K. Beam,et al.  Restoration of excitation—contraction coupling and slow calcium current in dysgenic muscle by dihydropyridine receptor complementary DNA , 1988, Nature.

[8]  A. Brown,et al.  Effects of protein kinase C activators on cardiac Ca2+ channels , 1988, Nature.

[9]  C. Lévêque,et al.  Characterization of the omega-conotoxin-binding molecule in rat brain synaptosomes and cultured neurons. , 1988, Molecular pharmacology.

[10]  C. Armstrong,et al.  Fast-deactivating calcium channels in chick sensory neurons , 1988, The Journal of general physiology.

[11]  N W Davies,et al.  Site and mechanism of activation of proton‐induced sodium current in chick dorsal root ganglion neurones. , 1988, The Journal of physiology.

[12]  R. Miller,et al.  Guanine nucleotide-binding protein Go-induced coupling of neuropeptide Y receptors to Ca2+ channels in sensory neurons. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[13]  D. Clapham,et al.  Phorbol ester increases the dihydropyridine-sensitive calcium conductance in a vascular smooth muscle cell line. , 1988, Circulation research.

[14]  Cha-Min Tang,et al.  Amiloride selectively blocks the low threshold (T) calcium channel. , 1988, Science.

[15]  O. Pongs,et al.  Shaker encodes a family of putative potassium channel proteins in the nervous system of Drosophila. , 1988, The EMBO journal.

[16]  R Y Tsien,et al.  Spatial distribution of calcium channels and cytosolic calcium transients in growth cones and cell bodies of sympathetic neurons. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[17]  H. Rasmussen,et al.  Ca channels in adrenal glomerulosa cells: K+ and angiotensin II increase T-type Ca channel current. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[18]  G. Schultz,et al.  Angiotensin II‐induced stimulation of voltage‐dependent Ca2+ currents in an adrenal cortical cell line. , 1988, The EMBO journal.

[19]  T. Roberts,et al.  Voltage-sensitive calcium channels in normal and transformed 3T3 fibroblasts. , 1988, Science.

[20]  M. Lazdunski,et al.  Properties of structure and interaction of the receptor for omega-conotoxin, a polypeptide active on Ca2+ channels. , 1988, Biochemical and biophysical research communications.

[21]  W. Lederer,et al.  Phorbol Ester Increases Calcium Current and Simulates the Effects of Angiotensin II on Cultured Neonatal Rat Heart Myocytes , 1988, Circulation research.

[22]  R. Kream,et al.  Characterization of the electrically evoked release of substance P from dorsal root ganglion neurons: methods and dihydropyridine sensitivity , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[23]  A. Dolphin,et al.  Activation of a G protein promotes agonist responses to calcium channel ligands , 1987, Nature.

[24]  M. Lazdunski,et al.  Restoration of dysgenic muscle contraction and calcium channel function by co-culture with normal spinal cord neurons , 1987, Nature.

[25]  M. Nowycky,et al.  Single‐channel recordings of three types of calcium channels in chick sensory neurones. , 1987, The Journal of physiology.

[26]  M. Nowycky,et al.  Kinetic and pharmacological properties distinguishing three types of calcium currents in chick sensory neurones. , 1987, The Journal of physiology.

[27]  A. Brown,et al.  A G protein directly regulates mammalian cardiac calcium channels. , 1987, Science.

[28]  Peter Hess,et al.  Direct measurement of proton transfer rates to a group controlling the dihydropyridine-sensitive Ca2+ channel , 1987, Nature.

[29]  Y. Jan,et al.  Cloning of genomic and complementary DNA from Shaker, a putative potassium channel gene from Drosophila. , 1987, Science.

[30]  R. Gross,et al.  Dynorphin A selectively reduces a large transient (N-type) calcium current of mouse dorsal root ganglion neurons in cell culture. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[31]  V. Flockerzi,et al.  Primary structure of the receptor for calcium channel blockers from skeletal muscle , 1987, Nature.

[32]  H. Saisu,et al.  Identification of the receptor for omega-conotoxin in brain. Probable components of the calcium channel. , 1987, The Journal of biological chemistry.

[33]  R. Tsien,et al.  Omega-conotoxin: direct and persistent blockade of specific types of calcium channels in neurons but not muscle. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[34]  J. Meldolesi,et al.  Activation of a muscarinic receptor selectively inhibits a rapidly inactivated Ca2+ current in rat sympathetic neurons. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[35]  A. Dolphin,et al.  Calcium channel currents and their inhibition by (‐)‐baclofen in rat sensory neurones: modulation by guanine nucleotides. , 1987, The Journal of physiology.

[36]  R. Eckert,et al.  Voltage-activated calcium channels that must be phosphorylated to respond to membrane depolarization. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[37]  E. Ríos,et al.  Involvement of dihydropyridine receptors in excitation–contraction coupling in skeletal muscle , 1987, Nature.

[38]  B. Olivera,et al.  Characterization of the omega-conotoxin target. Evidence for tissue-specific heterogeneity in calcium channel types. , 1987, Biochemistry.

[39]  H. Kasai,et al.  Presynaptic Ca-antagonist ω-conotoxin irreversibly blocks N-type Ca-channels in chick sensory neurons , 1987, Neuroscience Research.

[40]  G. Schultz,et al.  The GTP-binding protein, Go9 regulates neuronal calcium channels , 1987, Nature.

[41]  M. Lazdunski,et al.  Purification and characterization of the dihydropyridine-sensitive voltage-dependent calcium channel from cardiac tissue. , 1987, The Journal of biological chemistry.

[42]  R. J. Miller,et al.  Multiple calcium channels and neuronal function. , 1987, Science.

[43]  Kostyuk Pg,et al.  Some predictions concerning the calcium channel model with different conformational states. , 1986 .

[44]  K. Koyano,et al.  Binding of ω-conotoxin to receptor sites associated with the voltage-sensitive calcium channel , 1986, Neuroscience Letters.

[45]  H. C. Hartzell,et al.  Opposite effects of cyclic GMP and cyclic AMP on Ca2+ current in single heart cells , 1986, Nature.

[46]  R. Tsien,et al.  Calcium channel selectivity for divalent and monovalent cations. Voltage and concentration dependence of single channel current in ventricular heart cells , 1986, The Journal of general physiology.

[47]  R. Tsien,et al.  Blockade of current through single calcium channels by Cd2+, Mg2+, and Ca2+. Voltage and concentration dependence of calcium entry into the pore , 1986, The Journal of general physiology.

[48]  W. Catterall,et al.  Reconstitution of the voltage-sensitive calcium channel purified from skeletal muscle transverse tubules. , 1986, Biochemistry.

[49]  R. Coronado,et al.  Insulation of the conduction pathway of muscle transverse tubule calcium channels from the surface charge of bilayer phospholipid , 1986, The Journal of general physiology.

[50]  R. Tsien,et al.  Calcium channels in planar lipid bilayers: insights into mechanisms of ion permeation and gating. , 1986, Science.

[51]  K. Beam,et al.  A lethal mutation in mice eliminates the slow calcium current in skeletal muscle cells , 1986, Nature.

[52]  M. Nelson Interactions of divalent cations with single calcium channels from rat brain synaptosomes , 1986, The Journal of general physiology.

[53]  W R Gray,et al.  Peptide neurotoxins from fish-hunting cone snails. , 1985, Science.

[54]  D. Chesnoy-Marchais Kinetic properties and selectivity of calcium‐permeable single channels in Aplysia neurones. , 1985, The Journal of physiology.

[55]  R. Tsien,et al.  A novel type of cardiac calcium channel in ventricular cells , 1985, Nature.

[56]  R. Tsien,et al.  Three types of neuronal calcium channel with different calcium agonist sensitivity , 1985, Nature.

[57]  R. Tsien,et al.  Long-opening mode of gating of neuronal calcium channels and its promotion by the dihydropyridine calcium agonist Bay K 8644. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[58]  A. Cm,et al.  Two distinct populations of calcium channels in a clonal line of pituitary cells. , 1985 .

[59]  Yuichi Kanaoka,et al.  Primary structure of Electrophorus electricus sodium channel deduced from cDNA sequence , 1984, Nature.

[60]  Peter Hess,et al.  Different modes of Ca channel gating behaviour favoured by dihydropyridine Ca agonists and antagonists , 1984, Nature.

[61]  M. Lazdunski,et al.  Purification of the dihydropyridine receptor of the voltage-dependent Ca2+ channel from skeletal muscle transverse tubules using (+) [3H]PN 200-110. , 1984, Biochemical and biophysical research communications.

[62]  H. Lux,et al.  A low voltage-activated, fully inactivating Ca channel in vertebrate sensory neurones , 1984, Nature.

[63]  W. Almers,et al.  Non‐selective conductance in calcium channels of frog muscle: calcium selectivity in a single‐file pore. , 1984, The Journal of physiology.

[64]  W. Catterall,et al.  Purification of the calcium antagonist receptor of the voltage-sensitive calcium channel from skeletal muscle transverse tubules. , 1984, Biochemistry.

[65]  D. Yoshikami,et al.  A venom peptide with a novel presynaptic blocking action , 1984, Nature.

[66]  P. Kostyuk Calcium channels in the neuronal membrane. , 1981, Biochimica et biophysica acta.

[67]  O. Krishtal,et al.  A receptor for protons in the membrane of sensory neurons may participate in nociception , 1981, Neuroscience.

[68]  O. Krishtal,et al.  A receptor for protons in the nerve cell membrane , 1980, Neuroscience.

[69]  B. Bean,et al.  Classes of calcium channels in vertebrate cells. , 1989, Annual review of physiology.

[70]  R. Tsien,et al.  Dominant role of N-type Ca2+ channels in evoked release of norepinephrine from sympathetic neurons. , 1988, Science.

[71]  H. Lux,et al.  Block of Sodium Currents Through a Neuronal Calcium Channel by External Calcium and Magnesium Ions , 1988 .

[72]  N. Hagiwara,et al.  Contribution of two types of calcium currents to the pacemaker potentials of rabbit sino‐atrial node cells. , 1988, The Journal of physiology.

[73]  R. Tsien,et al.  Calcium channels: mechanisms of selectivity, permeation, and block. , 1987, Annual review of biophysics and biophysical chemistry.

[74]  Daniel Johnston,et al.  Noradrenaline and β-adrenoceptor agonists increase activity of voltage-dependent calcium channels in hippocampal neurons , 1987, Nature.

[75]  K. Dunlap,et al.  Kinase C activator 1,2-oleoylacetylglycerol attenuates voltage-dependent calcium current in sensory neurons. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[76]  R. Tsien,et al.  Mechanism of ion permeation through calcium channels , 1984, Nature.

[77]  R. Tsien Calcium channels in excitable cell membranes. , 1983, Annual review of physiology.

[78]  H. Reuter,et al.  The regulation of the calcium conductance of cardiac muscle by adrenaline. , 1977, The Journal of physiology.

[79]  H. Reuter,et al.  Divalent cations as charge carriers in excitable membranes. , 1973, Progress in biophysics and molecular biology.