CCD Radiation Effects and Test Issues for Satellite Designers

[1]  R. H. Philbrick,et al.  Modeling the impact of preflushing on CTE in proton irradiated CCD-based detectors , 2002 .

[2]  G. Hopkinson,et al.  Proton-induced charge transfer degradation in CCDs for near-room temperature applications , 1994 .

[3]  Edward A. Burke,et al.  Energy Dependence of Proton-Induced Displacement Damage in Silicon , 1986, IEEE Transactions on Nuclear Science.

[4]  P. W. Marshall,et al.  Displacement damage effects in mixed particle environments for shielded spacecraft CCDs , 1993 .

[5]  Cheryl J. Dale,et al.  Proton-induced displacement damage distributions and extremes in silicon microvolumes charge injection device , 1990 .

[6]  Cheryl J. Dale,et al.  Displacement damage extremes in silicon depletion regions , 1989 .

[7]  Paul Goudfrooij,et al.  Radiation damage effects on the CCD detector of the space telescope imaging spectrograph , 2000, Astronomical Telescopes + Instrumentation.

[8]  B. Burke,et al.  Dynamic suppression of interface-state dark current in buried-channel CCDs , 1991 .

[9]  J. Ziegler,et al.  stopping and range of ions in solids , 1985 .

[10]  J. van Gijn Holland , 2004, Practical Neurology.

[11]  Mark Stanford Robbins Radiation damage effects in charge coupled devices , 1992 .

[12]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[13]  G. Hopkinson Proton-induced changes in CTE for n-channel CCDs and the effect on star tracker performance , 2000 .

[14]  Dennis J. Gallagher,et al.  Monte Carlo model for describing charge transfer in irradiated CCDs , 1998, Electronic Imaging.

[15]  G. R. Hopkinson,et al.  Proton damage effects on p-channel CCDs , 1999 .

[16]  Alexandra Holland Annealing of proton-induced displacement damage in CCDs for space use. , 1991 .

[17]  J.P. Spratt,et al.  The effects of nuclear radiation on P-channel CCD imagers , 1997, 1997 IEEE Radiation Effects Data Workshop NSREC Snowmass 1997. Workshop Record Held in conjunction with IEEE Nuclear and Space Radiation Effects Conference.

[18]  N. Saks,et al.  A technique for suppressing dark current generated by interface states in buried channel CCD imagers , 1980, IEEE Electron Device Letters.

[19]  G. R. Hopkinson,et al.  Cobalt60 and proton radiation effects on large format, 2-D, CCD arrays for an Earth imaging application , 1992 .

[20]  Robert J. Walters,et al.  Proton nonionizing energy loss (NIEL) for device applications , 2003 .

[21]  Gregory Y. Prigozhin,et al.  Characterization of the radiation damage in the Chandra x-ray CCDs , 2000, SPIE Optics + Photonics.

[22]  Edmund K. Banghart,et al.  A model for charge transfer in buried-channel charge-coupled devices at low temperature , 1991 .

[23]  Stefano Casertano,et al.  THE PERFORMANCE AND CALIBRATION OF WFPC2 ON THE HUBBLE SPACE TELESCOPE , 1995 .

[24]  James R. Janesick,et al.  Effects of proton damage on charge-coupled devices , 1991, Medical Imaging.

[25]  R. A. Hartmann,et al.  Permanent Damage Produced by Single Proton Interactions in Silicon Devices , 1986, IEEE Transactions on Nuclear Science.

[26]  J. Lindhard,et al.  INTEGRAL EQUATIONS GOVERNING RADIATION EFFECTS. (NOTES ON ATOMIC COLLISIONS, III) , 1963 .

[27]  Maria Grazia Pia,et al.  Geant4-a new Monte Carlo toolkit for simulating space radiation shielding and effects , 2000, 2000 IEEE Radiation Effects Data Workshop. Workshop Record. Held in conjunction with IEEE Nuclear and Space Radiation Effects Conference (Cat. No.00TH8527).

[28]  Chiko Otani,et al.  Radiation damage to charge coupled devices in the space environment , 1996 .

[29]  Paul W. Marshall,et al.  PROTON EFFECTS AND TEST ISSUES FOR SATELLITE DESIGNERS: DISPLA CEMENT EFFECTS , 1999 .

[30]  G. R. Hopkinson,et al.  Proton-induced CCD charge transfer degradation at low-operating temperatures , 2001 .

[31]  C. Liebe Charged particle-induced noise in camera systems , 2001 .

[32]  Robert A. Reed,et al.  Analysis of charge transfer efficiency noise on proton-damaged CCDs for the Hubble Space Telescope Wide Field Camera 3 , 2002, SPIE Optics + Photonics.

[33]  M. J. Deen,et al.  Charge transfer efficiency in proton damaged CCD's , 1998 .

[34]  Robert A. Reed,et al.  Hot pixel behavior in WFC3 CCD detectors irradiated under operational conditions , 2004, SPIE Optics + Photonics.

[35]  F. Ashcroft,et al.  VIII. References , 1955 .

[36]  J. R. Srour,et al.  Enhanced displacement damage effectiveness in irradiated silicon devices , 1989 .

[37]  Nicole K. Grimes,et al.  Schumann , 2005, Nineteenth-Century Music Review.

[38]  B. Whitmore,et al.  Charge Transfer Efficiency for Very Faint Objects and a Reexamination of the Long-vs.-Short Problem for the WFPC2 , 2002 .

[39]  S. Watts,et al.  Quality control and monitoring of radiation damage in charge coupled devices at the Stanford Linear Collider , 1993 .

[40]  G. R. Hopkinson,et al.  Further measurements of random telegraph signals in proton irradiated CCDs , 1995 .

[41]  G. R. Hopkinson,et al.  Random telegraph signals from proton-irradiated CCDs , 1993 .

[42]  Nuclear and damage effects in Si produced by irradiations with medium energy protons , 1991 .

[43]  Michael E. Levi,et al.  Proton radiation damage in high-resistivity n-type silicon CCDs , 2002, IS&T/SPIE Electronic Imaging.