Synthetic Hilbert Space Engineering of Molecular Qudits: Isotopologue Chemistry

One of the most ambitious technological goals is the development of devices working under the laws of quantum mechanics. Among others, an important challenge to be resolved on the way to such breakthrough technology concerns the scalability of the available Hilbert space. Recently, proof‐of‐principle experiments were reported, in which the implementation of quantum algorithms (the Grover's search algorithm, iSWAP‐gate, etc.) in a single‐molecule nuclear spin qudit (with d = 4) known as 159TbPc2 was described, where the nuclear spins of lanthanides are used as a quantum register to execute simple quantum algorithms. In this progress report, the goal of linear and exponential up‐scalability of the available Hilbert space expressed by the qudit‐dimension “d” is addressed by synthesizing lanthanide metal complexes as quantum computing hardware. The synthesis of multinuclear large‐Hilbert‐space complexes has to be carried out under strict control of the nuclear spin degree of freedom leading to isotopologues, whereby electronic coupling between several nuclear spin units will exponentially extend the Hilbert space available for quantum information processing. Thus, improved multilevel spin qudits can be achieved that exhibit an exponentially scalable Hilbert space to enable high‐performance quantum computing and information storage.

[1]  Y. Kitagawa,et al.  Theoretical Study on the Difference in Electron Conductivity of a One-Dimensional Penta-Nickel(II) Complex between Anti-Ferromagnetic and Ferromagnetic States—Possibility of Molecular Switch with Open-Shell Molecules , 2019, Molecules.

[2]  W. Wernsdorfer,et al.  Quantum tunnelling of the magnetisation in single-molecule magnet isotopologue dimers† †Electronic supplementary information (ESI) available. CCDC 1898383 and 1898384. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c9sc01062a , 2019, Chemical science.

[3]  W. Wernsdorfer,et al.  Generalized Ramsey interferometry explored with a single nuclear spin qudit , 2018, npj Quantum Information.

[4]  M. Yamashita,et al.  Tetranuclear Dysprosium(III) Quintuple-Decker Single-Molecule Magnet Prepared Using a π-Extended Phthalocyaninato Ligand with Two Coordination Sites. , 2018, Chemistry.

[5]  W. Wernsdorfer,et al.  Observation of Cooperative Electronic Quantum Tunneling: Increasing Accessible Nuclear States in a Molecular Qudit. , 2018, Inorganic chemistry.

[6]  Alessandro Chiesa,et al.  A two-qubit molecular architecture for electron-mediated nuclear quantum simulation , 2018, Chemical science.

[7]  M. Yamashita,et al.  Comparison of the Magnetic Anisotropy and Spin Relaxation Phenomenon of Dinuclear Terbium(III) Phthalocyaninato Single-Molecule Magnets Using the Geometric Spin Arrangement. , 2018, Journal of the American Chemical Society.

[8]  W. Wernsdorfer,et al.  Molecular spin qudits for quantum algorithms. , 2017, Chemical Society reviews.

[9]  A. Morello Quantum search on a single-atom qudit , 2018, Nature Nanotechnology.

[10]  A Ferhat,et al.  Operating Quantum States in Single Magnetic Molecules: Implementation of Grover's Quantum Algorithm. , 2017, Physical review letters.

[11]  W. Wernsdorfer,et al.  Nuclear Spin Isomers: Engineering a Et4 N[DyPc2 ] Spin Qudit. , 2017, Angewandte Chemie.

[12]  B. le Guennic,et al.  Isotopically enriched polymorphs of dysprosium single molecule magnets. , 2017, Chemical communications.

[13]  J. P. Dehollain,et al.  A dressed spin qubit in silicon. , 2016, Nature nanotechnology.

[14]  M. Yamashita,et al.  Surface confinement of TbPc2-SMMs: structural, electronic and magnetic properties. , 2016, Dalton transactions.

[15]  E. Coronado,et al.  Three addressable spin qubits in a molecular single-ion magnet , 2016, 1610.03994.

[16]  W. Wernsdorfer,et al.  Magnetic interplay between two different lanthanides in a tris-phthalocyaninato complex: a viable synthetic route and detailed investigation in the bulk and on the surface , 2015 .

[17]  B. le Guennic,et al.  Magnetic memory in an isotopically enriched and magnetically isolated mononuclear dysprosium complex. , 2015, Angewandte Chemie.

[18]  Joseph M. Zadrozny,et al.  Multiple quantum coherences from hyperfine transitions in a vanadium(IV) complex. , 2014, Journal of the American Chemical Society.

[19]  Fernando Luis,et al.  Heterodimetallic [LnLn′] Lanthanide Complexes: Toward a Chemical Design of Two-Qubit Molecular Spin Quantum Gates , 2014, Journal of the American Chemical Society.

[20]  W. Wernsdorfer,et al.  Electrically driven nuclear spin resonance in single-molecule magnets , 2014, Science.

[21]  A. Nakajima,et al.  Liquid-Phase Synthesis of Multidecker Organoeuropium Sandwich Complexes and Their Physical Properties , 2014 .

[22]  Daniel A. Lidar,et al.  Defining and detecting quantum speedup , 2014, Science.

[23]  H. Meyer,et al.  Implementation of a quantum metamaterial using superconducting qubits , 2013, Nature Communications.

[24]  W. Wernsdorfer,et al.  Strong spin-phonon coupling between a single-molecule magnet and a carbon nanotube nanoelectromechanical system. , 2013, Nature nanotechnology.

[25]  J. P. Dehollain,et al.  High-fidelity readout and control of a nuclear spin qubit in silicon , 2013, Nature.

[26]  J. P. Dehollain,et al.  A single-atom electron spin qubit in silicon , 2012, Nature.

[27]  W. Wernsdorfer,et al.  Electronic read-out of a single nuclear spin using a molecular spin transistor , 2012, Nature.

[28]  Fernando Luis,et al.  Design of magnetic coordination complexes for quantum computing. , 2012, Chemical Society reviews.

[29]  W. Wernsdorfer,et al.  Supramolecular spin valves. , 2011, Nature materials.

[30]  Majid Mohammadi,et al.  Controlled gates for multi-level quantum computation , 2011, Quantum Inf. Process..

[31]  G. J. Milburn,et al.  Photons as qubits , 2009 .

[32]  Marco Affronte,et al.  Engineering the coupling between molecular spin qubits by coordination chemistry. , 2009, Nature nanotechnology.

[33]  S. Merkel,et al.  Constructing General Unitary Maps from State Preparations , 2009, 0902.1969.

[34]  J. Twamley,et al.  Globally controlled universal quantum computation with arbitrary subsystem dimension , 2008, 0811.4245.

[35]  I. Bloch Quantum coherence and entanglement with ultracold atoms in optical lattices , 2008, Nature.

[36]  J. Clarke,et al.  Superconducting quantum bits , 2008, Nature.

[37]  R. Blatt,et al.  Entangled states of trapped atomic ions , 2008, Nature.

[38]  W. Wernsdorfer,et al.  Molecular spintronics using single-molecule magnets. , 2008, Nature materials.

[39]  L. Vandersypen,et al.  Supporting Online Material for Coherent Control of a Single Electron Spin with Electric Fields Materials and Methods Som Text Figs. S1 and S2 References , 2022 .

[40]  R. Prevedel,et al.  High-speed linear optics quantum computing using active feed-forward , 2007, Nature.

[41]  L. Childress,et al.  Supporting Online Material for , 2006 .

[42]  Dianne P. O'Leary,et al.  Parallelism for quantum computation with qudits , 2006, quant-ph/0603081.

[43]  W. Wernsdorfer,et al.  Quantum tunneling of magnetization in lanthanide single-molecule magnets: bis(phthalocyaninato)terbium and bis(phthalocyaninato)dysprosium anions. , 2005, Angewandte Chemie.

[44]  K. Koyasu,et al.  Lanthanide organometallic sandwich nanowires: formation mechanism. , 2005, The journal of physical chemistry. A.

[45]  F. Jelezko,et al.  Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate. , 2004, Physical review letters.

[46]  Yasunobu Nakamura,et al.  Coherent Quantum Dynamics of a Superconducting Flux Qubit , 2003, Science.

[47]  Lov K. Grover From Schrödinger’s equation to the quantum search algorithm , 2001, quant-ph/0109116.

[48]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[49]  N. Gershenfeld,et al.  Experimental Implementation of Fast Quantum Searching , 1998 .

[50]  C. Rizzoli,et al.  One Step Forward to "Stapled" Bis(phthalocyanine) Metal Complexes: Synthesis, Characterization, and Redox Properties of Bis(phthalocyaninato)niobium(IV). X-ray Crystal Structure of the Monoelectronically Oxidized Species [Pc(2)Nb](I(3))(I(2))(0.5)(ClNP)(3.5) (ClNP = 1-Chloronaphthalene). , 1998, Inorganic chemistry.

[51]  D. DiVincenzo,et al.  Quantum computation with quantum dots , 1997, cond-mat/9701055.

[52]  Lov K. Grover Quantum Mechanics Helps in Searching for a Needle in a Haystack , 1997, quant-ph/9706033.

[53]  C. Ercolani,et al.  Bis(phthalocyaninato)niobium(IV): a new sandwich-type molecule ‘stapled’ by two inter-ligand CC σ bonds , 1997 .

[54]  L. Thomas,et al.  Macroscopic quantum tunnelling of magnetization in a single crystal of nanomagnets , 1996, Nature.

[55]  S Lloyd,et al.  A Potentially Realizable Quantum Computer , 1993, Science.

[56]  D. Deutsch Quantum theory, the Church–Turing principle and the universal quantum computer , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[57]  R. Feynman Simulating physics with computers , 1999 .

[58]  E. Schrödinger Discussion of Probability Relations between Separated Systems , 1935, Mathematical Proceedings of the Cambridge Philosophical Society.

[59]  Albert Einstein,et al.  Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? , 1935 .