The relevance vector machine for seismic Bayesian compressive sensing

[1]  Mauricio D. Sacchi,et al.  Interpolation and denoising of high-dimensional seismic data by learning a tight frame , 2015 .

[2]  Carl E. Rasmussen,et al.  Healing the relevance vector machine through augmentation , 2005, ICML.

[3]  Yang Liu,et al.  Seislet transform and seislet frame , 2010 .

[4]  Michael E. Tipping Sparse Bayesian Learning and the Relevance Vector Machine , 2001, J. Mach. Learn. Res..

[5]  Hassan Mansour,et al.  Efficient matrix completion for seismic data reconstruction , 2015 .

[6]  A. C. Faul,et al.  Bayesian Feature Learning for Seismic Compressive Sensing and Denoising , 2017 .

[7]  Georgios Pilikos,et al.  Beta Process Factor Analysis for efficient seismic Compressive Sensing with uncertainty quantification , 2018, 2018 IEEE 23rd International Conference on Digital Signal Processing (DSP).

[8]  Mauricio D. Sacchi,et al.  Surface-Consistent Sparse Multichannel Blind Deconvolution of Seismic Signals , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[9]  Mauricio D. Sacchi,et al.  Fourier Reconstruction of Nonuniformly Sampled, Aliased Seismic Data , 2022 .

[10]  Yangkang Chen,et al.  Data-driven multitask sparse dictionary learning for noise attenuation of 3D seismic data , 2017 .

[11]  Yangkang Chen,et al.  Hybrid rank-sparsity constraint model for simultaneous reconstruction and denoising of 3D seismic data , 2017 .

[12]  Yangkang Chen,et al.  Dealiased Seismic Data Interpolation Using Seislet Transform With Low-Frequency Constraint , 2015, IEEE Geoscience and Remote Sensing Letters.

[13]  Georgios Pilikos,et al.  Seismic compressive sensing beyond aliasing using Bayesian feature learning , 2017 .

[14]  D. J. Verschuur,et al.  Restoration of missing offsets by parabolic Radon transform1 , 1995 .

[15]  M. Sacchi,et al.  Simultaneous seismic data denoising and reconstruction via multichannel singular spectrum analysis , 2011 .

[16]  Necati Gulunay,et al.  Seismic trace interpolation in the Fourier transform domain , 2003 .

[17]  Michael E. Tipping,et al.  Fast Marginal Likelihood Maximisation for Sparse Bayesian Models , 2003 .

[18]  Jianwei Ma,et al.  What can machine learning do for seismic data processing? An interpolation application , 2017 .

[19]  Lynn Burroughs,et al.  Rank-Reduction-Based Trace Interpolation , 2010 .

[20]  Stanley Osher,et al.  Monte Carlo data-driven tight frame for seismic data recovery , 2016 .

[21]  Mauricio D. Sacchi,et al.  Interpolation and extrapolation using a high-resolution discrete Fourier transform , 1998, IEEE Trans. Signal Process..

[22]  David B. Dunson,et al.  Nonparametric Bayesian Dictionary Learning for Analysis of Noisy and Incomplete Images , 2012, IEEE Transactions on Image Processing.

[23]  D. J. Verschuur,et al.  The utilization of the double focal transformation for sparse data representation and data reconstruction , 2016 .

[24]  Sergey Fomel,et al.  OC-seislet: Seislet transform construction with differential offset continuation , 2010 .

[25]  Marc Teboulle,et al.  A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..

[26]  Michael P. Friedlander,et al.  Probing the Pareto Frontier for Basis Pursuit Solutions , 2008, SIAM J. Sci. Comput..

[27]  Jianwei Ma,et al.  Intelligent interpolation by Monte Carlo machine learning , 2018 .

[28]  Felix J. Herrmann,et al.  Application of randomized sampling schemes to curvelet-based sparsity-promoting seismic data recovery , 2013 .

[29]  R. Abma,et al.  3D interpolation of irregular data with a POCS algorithm , 2006 .

[30]  A. C. Faul,et al.  Relevance Vector Machines with Uncertainty Measure for Seismic Bayesian Compressive Sensing and Survey Design , 2016, 2016 15th IEEE International Conference on Machine Learning and Applications (ICMLA).

[31]  Mostafa Naghizadeh,et al.  Seismic data interpolation and denoising in the frequency-wavenumber domain , 2012 .

[32]  Y. Chen,et al.  Compressive sensing for seismic data reconstruction via fast projection onto convex sets based on seislet transform , 2016 .

[33]  James H. McClellan,et al.  Seismic data denoising through multiscale and sparsity-promoting dictionary learning , 2015 .

[34]  A. Stanton,et al.  Mitigating Artifacts in Projection Onto Convex Sets Interpolation , 2015 .

[35]  Lawrence Carin,et al.  Nonparametric factor analysis with beta process priors , 2009, ICML '09.

[36]  Zhenming Peng,et al.  Seismic random noise attenuation using shearlet and total generalized variation , 2015 .

[37]  A. Duijndam BAYESIAN ESTIMATION IN SEISMIC INVERSION. PART I: PRINCIPLES1 , 1988 .

[38]  Mauricio D. Sacchi,et al.  A fast reduced-rank interpolation method for prestack seismic volumes that depend on four spatial dimensions , 2013 .

[39]  Nadia Kreimer,et al.  A Comparison of 5D Reconstruction Methods , 2012 .

[40]  Yu Zhang,et al.  Antileakage Fourier transform for seismic data regularization , 2005 .

[41]  Nadia Kreimer,et al.  A tensor higher-order singular value decomposition for prestack seismic data noise reduction and interpolation , 2012 .

[42]  A. Duijndam BAYESIAN ESTIMATION IN SEISMIC INVERSION. PART II: UNCERTAINTY ANALYSIS1 , 1988 .

[43]  Lawrence Carin,et al.  Bayesian Compressive Sensing , 2008, IEEE Transactions on Signal Processing.

[44]  F. Herrmann,et al.  Simply denoise: Wavefield reconstruction via jittered undersampling , 2008 .

[45]  Mauricio D. Sacchi,et al.  High-resolution prestack seismic inversion using a hybrid FISTA least-squares strategy , 2013 .

[46]  Michael Elad,et al.  Image Denoising Via Sparse and Redundant Representations Over Learned Dictionaries , 2006, IEEE Transactions on Image Processing.

[47]  Mauricio D. Sacchi,et al.  Beyond alias hierarchical scale curvelet interpolation of regularly and irregularly sampled seismic data , 2010 .

[48]  Mauricio D. Sacchi,et al.  On sampling functions and Fourier reconstruction methods , 2010 .

[49]  Weilin Huang,et al.  Damped rank-reduction method for simultaneous denoising and reconstruction of 5D seismic data , 2016 .

[50]  Tadeusz J. Ulrych,et al.  A Bayes tour of inversion: A tutorial , 2001 .

[51]  Jianwei Ma,et al.  Seismic data restoration via data-driven tight frame , 2014 .

[52]  Mauricio D. Sacchi,et al.  Minimum weighted norm interpolation of seismic records , 2004 .

[53]  M. Oristaglio SEAM Phase II—Land Seismic Challenges , 2012 .

[54]  Jianwei Ma,et al.  Simultaneous dictionary learning and denoising for seismic data , 2014 .

[55]  Mauricio D. Sacchi,et al.  Accurate interpolation with high-resolution time-variant Radon transforms , 2002 .

[56]  Mauricio D. Sacchi,et al.  Multistep autoregressive reconstruction of seismic records , 2007 .

[57]  Felix J. Herrmann,et al.  Non-parametric seismic data recovery with curvelet frames , 2008 .

[58]  Georgios Pilikos,et al.  Bayesian modeling for uncertainty quantification in seismic compressive sensing , 2019 .

[59]  Yanfei Wang,et al.  Accelerating seismic interpolation with a gradient projection method based on tight frame property of curvelet , 2015 .

[60]  Dirk Gajewski,et al.  5-D interpolation with wave-front attributes , 2017 .

[61]  Mauricio D. Sacchi,et al.  Sparse multichannel blind deconvolution , 2014 .

[62]  Walter Söllner,et al.  Dictionary learning for signal-to-noise ratio enhancement , 2015 .