Comparative study of global invariant descriptors for object recognition

Although many object invariant descriptors have been proposed in the literature, putting them into practice to obtain a robust recognition system that is able to face several perturbations is still a studied problem. After presenting the most commonly used global invariant descriptors, a comparative study permits us to show their ability to discriminate between objects with little training. The Columbia Object Image Library database (COIL-100), which presents a same object translated, rotated, and scaled, is used to test the invariant features of geometrical transforms. Partial object occultation or presence of complex background are examples of used images to test the robustness of the studied descriptors. We compare them in both a global and a local context (computed on the neighborhood of a pixel). The scale invariant feature transform descriptor is used as a reference for local invariant descriptors. This study shows the relative performance of invariant descriptors used in both a global and a local context and identifies the different situations for which they are best suited.

[1]  Hélène Laurent,et al.  Object Recognition Using Local Characterisation and Zernike Moments , 2005, ACIVS.

[2]  Faouzi Ghorbel,et al.  Robust and Efficient Fourier-Mellin Transform Approximations for Gray-Level Image Reconstruction and Complete Invariant Description , 2001, Comput. Vis. Image Underst..

[3]  Benoit Charroux Analyse d'images : cooperation d'operateurs de segmentation guidee par l'interpretation , 1996 .

[4]  Chih-Jen Lin,et al.  Working Set Selection Using Second Order Information for Training Support Vector Machines , 2005, J. Mach. Learn. Res..

[5]  Refractor Vision , 2000, The Lancet.

[6]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[7]  Christopher G. Harris,et al.  A Combined Corner and Edge Detector , 1988, Alvey Vision Conference.

[8]  David G. Stork,et al.  Pattern Classification , 1973 .

[9]  Ming-Kuei Hu,et al.  Visual pattern recognition by moment invariants , 1962, IRE Trans. Inf. Theory.

[10]  Bill Triggs,et al.  Histograms of oriented gradients for human detection , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[11]  Faouzi Ghorbel,et al.  A complete invariant description for gray-level images by the harmonic analysis approach , 1994, Pattern Recognit. Lett..

[12]  Dong-Gyu Sim,et al.  Object matching algorithms using robust Hausdorff distance measures , 1999, IEEE Trans. Image Process..

[13]  Bernt Schiele,et al.  Pedestrian detection in crowded scenes , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[14]  Joni-Kristian Kämäräinen,et al.  Simple Gabor feature space for invariant object recognition , 2004, Pattern Recognit. Lett..

[15]  Alireza Khotanzad,et al.  Invariant Image Recognition by Zernike Moments , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[16]  Chih-Jen Lin,et al.  A comparison of methods for multiclass support vector machines , 2002, IEEE Trans. Neural Networks.

[17]  Herbert J. Reitboeck,et al.  A Neural Network for Position Invariant Pattern Recognition Combining Spiking Neurons with the Fourier-Transform , 1996, Int. J. Neural Syst..

[18]  Cordelia Schmid,et al.  Evaluation of Interest Point Detectors , 2000, International Journal of Computer Vision.

[19]  Faouzi Ghorbel,et al.  Robust and efficient Fourier-Mellin transform approximations for invariant grey-level image description and reconstruction , 2001 .

[20]  Sang Uk Lee,et al.  Recognition of partially occluded objects using probabilistic ARG (attributed relational graph)-based matching , 2003, Comput. Vis. Image Underst..

[21]  M. Turk,et al.  Eigenfaces for Recognition , 1991, Journal of Cognitive Neuroscience.

[22]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[23]  Shigeo Abe DrEng Pattern Classification , 2001, Springer London.

[24]  Cordelia Schmid,et al.  A Performance Evaluation of Local Descriptors , 2005, IEEE Trans. Pattern Anal. Mach. Intell..

[25]  Chee-Way Chong,et al.  A comparative analysis of algorithms for fast computation of Zernike moments , 2003, Pattern Recognit..