Toward Efficient Transfer Learning in 6G

6G networks will greatly expand the support for data-oriented, autonomous applications for over the top (OTT) and networking use cases. The success of these use cases will depend on the availability of big data sets which is not practical in many real scenarios due to the highly dynamic behavior of systems and the cost of data collection procedures. Transfer learning (TL) is a promising approach to deal with these challenges through the sharing of knowledge among diverse learning algorithms. with TL, the learning rate and learning accuracy can be considerably improved. However, there are implementation challenges to efficiently deploy and utilize TL in 6G. In this paper, we initiate this discussion by providing some performance metrics to measure the TL success. Then, we show how infrastructure, application, management, and training planes of 6G can be adapted to handle TL. We provide examples of TL in 6G and highlight the spatio-temporal features of data in 6G that can lead to efficient TL. By simulation results, we demonstrate how transferring the quantized neural network weights between two use cases can make a trade-off between overheads and performance and attain more efficient TL in 6G. We also provide a list of future research directions in TL for 6G.

[1]  Harish Viswanathan,et al.  6G Architecture to Connect the Worlds , 2020, IEEE Access.

[2]  Bo Chen,et al.  MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications , 2017, ArXiv.

[3]  Jiayu Zhou,et al.  Transfer Learning in Deep Reinforcement Learning: A Survey , 2020, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[4]  Eryk Dutkiewicz,et al.  Transfer Learning for Future Wireless Networks: A Comprehensive Survey , 2021, ArXiv.

[5]  Yuanming Shi,et al.  Transfer Learning for Mixed-Integer Resource Allocation Problems in Wireless Networks , 2018, ICC 2019 - 2019 IEEE International Conference on Communications (ICC).

[6]  Saeedeh Parsaeefard,et al.  Artificial Intelligence as a Services (AI-aaS) on Software-Defined Infrastructure , 2019, ArXiv.

[7]  Qiang Yang,et al.  A Survey on Transfer Learning , 2010, IEEE Transactions on Knowledge and Data Engineering.

[8]  Qiao Tian,et al.  Transfer Learning Promotes 6G Wireless Communications: Recent Advances and Future Challenges , 2021, IEEE Transactions on Reliability.

[9]  Hui Xiong,et al.  A Comprehensive Survey on Transfer Learning , 2019, Proceedings of the IEEE.

[10]  Peter Stone,et al.  Transfer Learning for Reinforcement Learning Domains: A Survey , 2009, J. Mach. Learn. Res..

[11]  Ridha Soua,et al.  Improved operator experience through Experiential Networked Intelligence , 2017 .

[12]  Branka Vucetic,et al.  A Tutorial of Ultra-Reliable and Low-Latency Communications in 6G: Integrating Theoretical Knowledge into Deep Learning , 2020, ArXiv.