2 1 Se p 20 06 Duality via cycle complexes

We show that Bloch’s complex of relative zero-cycles can be used as a dualizing complex over perfect fields and number rings. This leads to duality theorems for torsion sheaves on arbitrary separated schemes of finite type over algebraically closed fields, finite fields, local fields of mixed characteristic, and rings of integers in number rings, generalizing results which so far have only been known for smooth schemes or in low dimensions, and unifying the p-adic and l-adic theory. As an application, we generalize Rojtman’s theorem to normal, projective schemes.

[1]  Motivic Cohomology Motivic Cohomology, K-Theory and Topological Cyclic Homology* , 2010 .

[2]  Kanetomo Sato,et al.  Étale duality for constructible sheaves on arithmetic schemes , 2009, 0910.3759.

[3]  U. Jannsen Hasse principles for higher-dimensional fields , 2009, 0910.2803.

[4]  Thomas H. Geisser Motivic cohomology over Dedekind rings , 2004 .

[5]  S. Saito,et al.  Kato homology of arithmetic schemes and higher class field theory over local fields. , 2003 .

[6]  V. Srinivas,et al.  Zero-cycles and K-theory on normal surfaces , 2002 .

[7]  Vladimir Voevodsky,et al.  Motivic cohomology groups are isomorphic to higher chow groups in any characteristic , 2002 .

[8]  Thomas H. Geisser,et al.  The Bloch-Kato conjecture and a theorem of Suslin-Voevodsky , 2001 .

[9]  Vladimir Voevodsky,et al.  Cycles, Transfers And Motivic Homology Theories , 2000 .

[10]  S. Lang,et al.  Finiteness Theorems in Geometric Classfield Theory , 2000 .

[11]  M. Levine TECHNIQUES OF LOCALIZATION IN THE THEORY OF ALGEBRAIC CYCLES , 1999 .

[12]  Michael Spiefi Artin-Verdier duality for arithmetic surfaces , 1996 .

[13]  Noriyuki Suwa A note on Gersten's conjecture for logarithmic Hodge-Witt sheaves , 1995 .

[14]  J. Colliot-Thélène On the Reciprocity Sequence in the Higher Class Field Theory of Function Fields , 1993 .

[15]  E. Nart The Bloch Complex in Codimension One and Arithmetic Duality , 1989 .

[16]  M. Gros,et al.  La conjecture de Gersten pour les faisceaux de Hodge-Witt logarithmique , 1988 .

[17]  C. Deninger Duality in the Étale cohomology of one-dimensional proper schemes and generalizations , 1987 .

[18]  James S. Milne,et al.  Arithmetic Duality Theorems , 1987 .

[19]  C. Deninger,et al.  Artin-Verdier duality for n-dimensional local fields involving higher algebraic K-sheaves , 1986 .

[20]  Kazuya Kato,et al.  The dimension of fields and algebraic K-theory , 1986 .

[21]  Spencer Bloch,et al.  Algebraic cycles and higher K-theory , 1986 .

[22]  J. Milne VALUES OF ZETA FUNCTIONS OF VARIETIES OVER FINITE FIELDS , 1986 .

[23]  Kazuya Kato A Hasse principle for two dimensional global fields. , 1986 .

[24]  M. Levine Torsion Zero-Cycles on Singular Varieties , 1985 .

[25]  C. Weibel,et al.  Zero cycles and complete intersections on singular varieties. , 1985 .

[26]  J. Milne Zero cycles on algebraic varieties in nonzero characteristic : Rojtman's theorem , 1982 .

[27]  A. A. Rojtman The Torsion of the Group of 0-Cycles Modulo Rational Equivalence , 1980 .

[28]  S. Bloch Torsion algebraic cycles and a theorem of Roitman , 1979 .

[29]  B. Mazur Notes on étale cohomology of number fields , 1973 .

[30]  Alexander Grothendieck,et al.  Technique de descente et théorèmes d'existence en géométrie algébrique. VI. Les schémas de Picard : propriétés générales , 1962 .

[31]  Jean-Pierre Serre Morphismes universels et variété d'Albanese , 1959 .

[32]  A. Seidenberg THE HYPERPLANE SECTIONS OF NORMAL VARIETIES , 1950 .