2 1 Se p 20 06 Duality via cycle complexes
暂无分享,去创建一个
[1] Motivic Cohomology. Motivic Cohomology, K-Theory and Topological Cyclic Homology* , 2010 .
[2] Kanetomo Sato,et al. Étale duality for constructible sheaves on arithmetic schemes , 2009, 0910.3759.
[3] U. Jannsen. Hasse principles for higher-dimensional fields , 2009, 0910.2803.
[4] Thomas H. Geisser. Motivic cohomology over Dedekind rings , 2004 .
[5] S. Saito,et al. Kato homology of arithmetic schemes and higher class field theory over local fields. , 2003 .
[6] V. Srinivas,et al. Zero-cycles and K-theory on normal surfaces , 2002 .
[7] Vladimir Voevodsky,et al. Motivic cohomology groups are isomorphic to higher chow groups in any characteristic , 2002 .
[8] Thomas H. Geisser,et al. The Bloch-Kato conjecture and a theorem of Suslin-Voevodsky , 2001 .
[9] Vladimir Voevodsky,et al. Cycles, Transfers And Motivic Homology Theories , 2000 .
[10] S. Lang,et al. Finiteness Theorems in Geometric Classfield Theory , 2000 .
[11] M. Levine. TECHNIQUES OF LOCALIZATION IN THE THEORY OF ALGEBRAIC CYCLES , 1999 .
[12] Michael Spiefi. Artin-Verdier duality for arithmetic surfaces , 1996 .
[13] Noriyuki Suwa. A note on Gersten's conjecture for logarithmic Hodge-Witt sheaves , 1995 .
[14] J. Colliot-Thélène. On the Reciprocity Sequence in the Higher Class Field Theory of Function Fields , 1993 .
[15] E. Nart. The Bloch Complex in Codimension One and Arithmetic Duality , 1989 .
[16] M. Gros,et al. La conjecture de Gersten pour les faisceaux de Hodge-Witt logarithmique , 1988 .
[17] C. Deninger. Duality in the Étale cohomology of one-dimensional proper schemes and generalizations , 1987 .
[18] James S. Milne,et al. Arithmetic Duality Theorems , 1987 .
[19] C. Deninger,et al. Artin-Verdier duality for n-dimensional local fields involving higher algebraic K-sheaves , 1986 .
[20] Kazuya Kato,et al. The dimension of fields and algebraic K-theory , 1986 .
[21] Spencer Bloch,et al. Algebraic cycles and higher K-theory , 1986 .
[22] J. Milne. VALUES OF ZETA FUNCTIONS OF VARIETIES OVER FINITE FIELDS , 1986 .
[23] Kazuya Kato. A Hasse principle for two dimensional global fields. , 1986 .
[24] M. Levine. Torsion Zero-Cycles on Singular Varieties , 1985 .
[25] C. Weibel,et al. Zero cycles and complete intersections on singular varieties. , 1985 .
[26] J. Milne. Zero cycles on algebraic varieties in nonzero characteristic : Rojtman's theorem , 1982 .
[27] A. A. Rojtman. The Torsion of the Group of 0-Cycles Modulo Rational Equivalence , 1980 .
[28] S. Bloch. Torsion algebraic cycles and a theorem of Roitman , 1979 .
[29] B. Mazur. Notes on étale cohomology of number fields , 1973 .
[30] Alexander Grothendieck,et al. Technique de descente et théorèmes d'existence en géométrie algébrique. VI. Les schémas de Picard : propriétés générales , 1962 .
[31] Jean-Pierre Serre. Morphismes universels et variété d'Albanese , 1959 .
[32] A. Seidenberg. THE HYPERPLANE SECTIONS OF NORMAL VARIETIES , 1950 .