On the representation of electron multiple elastic-scattering distributions for Monte Carlo calculations

Abstract A new representation of elastic electron–nucleus (Coulomb) multiple-scattering distributions is developed. Using the screened Rutherford cross section with the Moliere screening parameter as an example, a simple analytic angular transformation of the Goudsmit–Saunderson multiple-scattering distribution accounts for most of the structure of the angular distribution leaving a residual 3-parameter (path-length, transformed angle and screening parameter) function that is reasonably slowly varying and suitable for rapid, accurate interpolation in a computer-intensive algorithm. The residual function is calculated numerically for a wide range of Moliere screening parameters and path-lengths suitable for use in a general-purpose condensed-history Monte Carlo code. Additionally, techniques are developed that allow the distributions to be scaled to account for energy loss. This new representation allows “on-the-fly” sampling of Goudsmit–Saunderson angular distributions in a screened Rutherford approximation suitable for Class II condensed-history Monte Carlo codes.

[1]  H. W. Lewis Multiple Scattering in an Infinite Medium , 1950 .

[2]  F. H. Attix,et al.  5 – Monte Carlo Techniques of Electron and Photon Transport for Radiation Dosimetry , 1990 .

[3]  S. T. Perkins,et al.  Tables and graphs of electron-interaction cross sections from 10 eV to 100 GeV derived from the LLNL Evaluated Electron Data Library (EEDL), Z = 1--100 , 1991 .

[4]  Lawrence S. Kroll Mathematica--A System for Doing Mathematics by Computer. , 1989 .

[5]  The Polarisation of Electrons by Double Scattering , 1932 .

[6]  N. Mott The Scattering of Fast Electrons by Atomic Nuclei , 1929 .

[7]  G. Wentzel Zur Theorie der Streuung von ß-Strahlen , 1922 .

[8]  K. B. Winterbon Finite-angle multiple scattering , 1987 .

[9]  Stephen M. Seltzer,et al.  Tables and Graphs of Electron-Interaction Cross Sections from 10 eV to 100 GeV Derived from the LLNL Evaluated Data Library (EEDL), Z=1-100 | NIST , 1991 .

[10]  J. L. Saunderson,et al.  Multiple Scattering of Electrons , 1940 .

[11]  Martin J. Berger,et al.  Multiple-Scattering Angular Deflections and Energy- Loss Straggling , 1988 .

[12]  Stephen M. Seltzer,et al.  Electron-photon Monte Carlo calculations: The ETRAN code , 1991 .

[13]  A. P. Kabachenko,et al.  Search for new isotopes of element 112 by irradiation of 238U with 48Ca , 1999 .

[14]  A. Bielajew Plural and multiple small-angle scattering from a screened Rutherford cross section , 1994 .

[15]  L. V. Spencer,et al.  THEORY OF ELECTRON PENETRATION , 1955 .

[16]  K. S. Kölbig,et al.  Errata: Milton Abramowitz and Irene A. Stegun, editors, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards, Applied Mathematics Series, No. 55, U.S. Government Printing Office, Washington, D.C., 1994, and all known reprints , 1972 .

[17]  Electron transport: multiple and plural elastic scattering , 1996 .

[18]  W. Bothe Das allgemeine Fehlergesetz, die Schwankungen der Feldstärke in einem Dielektrikum und die Zerstreuung derα-Strahlen , 1921 .

[19]  F. H. Attix,et al.  The Dosimetry of Ionizing Radiation, Vol. 2 , 1987 .

[20]  David W. O. Rogers,et al.  Presta: The parameter reduced electron-step transport algorithm for electron monte carlo transport , 1986 .

[21]  Hans A. Bethe,et al.  Moliere's theory of multiple scattering , 1953 .

[22]  A. Bielajew A hybrid multiple-scattering theory for electron-transport Monte Carlo calculations , 1996 .

[23]  P Andreo,et al.  Constraints of the multiple-scattering theory of Molière in Monte Carlo simulations of the transport of charged particles. , 1993, Medical physics.