A quantum Rosetta stone for interferometry

Heisenberg-limited measurement protocols can be used to gain an increase in measurement precision over classical protocols. Such measurements can be implemented using, for example, optical Mach—Zehnder interferometers and Ramsey spectroscopes. We address the formal equivalence between the Mach—Zehnder interferometer, the Ramsey spectroscope and a generic quantum logic circuit. Based on this equivalence we introduce the 'quantum Rosetta stone', and we describe a projective-measurement scheme for generating the desired correlations between the interferometric input states in order to achieve Heisenberg-limited sensitivity. The Rosetta stone then tells us that the same method should work in atom spectroscopy.

[1]  Masato Koashi,et al.  Probabilistic manipulation of entangled photons , 2001 .

[2]  J. Franson,et al.  Demonstration of nondeterministic quantum logic operations using linear optical elements. , 2001, Physical review letters.

[3]  Teich,et al.  Quantum-mechanical lossless beam splitter: SU(2) symmetry and photon statistics. , 1989, Physical review. A, General physics.

[4]  Jonathan P. Dowling,et al.  CORRELATED INPUT-PORT, MATTER-WAVE INTERFEROMETER : QUANTUM-NOISE LIMITS TO THE ATOM-LASER GYROSCOPE , 1998 .

[5]  John L. Hall,et al.  Influence of decorrelation on Heisenberg-limited interferometry with quantum correlated photons , 1998 .

[6]  J. Raimond,et al.  Simple cavity-QED two-bit universal quantum logic gate: The principle and expected performances. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[7]  Hong,et al.  Measurement of subpicosecond time intervals between two photons by interference. , 1987, Physical review letters.

[8]  Lane,et al.  Maximum-likelihood statistics of multiple quantum phase measurements. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[9]  Mann,et al.  Nonclassical interferometry with intelligent light. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[10]  Kiel T. Williams,et al.  Extreme quantum entanglement in a superposition of macroscopically distinct states. , 1990, Physical review letters.

[11]  N. J. Cerf,et al.  Optical simulation of quantum logic , 1998 .

[12]  Scully,et al.  Quantum-noise limits to matter-wave interferometry. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[13]  Joseph Jacobson,et al.  Quantum limit for the atom-light interferometer , 1995 .

[14]  Jonathan P. Dowling,et al.  Creation of large-photon-number path entanglement conditioned on photodetection , 2001, quant-ph/0112002.

[15]  R. Cleve,et al.  Quantum algorithms revisited , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[16]  Ueda,et al.  Squeezed spin states. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[17]  M D'Angelo,et al.  Two-photon diffraction and quantum lithography. , 2001, Physical review letters.

[18]  King,et al.  Demonstration of a fundamental quantum logic gate. , 1995, Physical review letters.

[19]  J. Dalibard,et al.  Relative phase of two Bose-Einstein condensates , 1997 .

[20]  Klauder,et al.  SU(2) and SU(1,1) interferometers. , 1986, Physical review. A, General physics.

[21]  Yurke Input states for enhancement of fermion interferometer sensitivity. , 1986, Physical review letters.

[22]  Hillery,et al.  Interferometers and minimum-uncertainty states. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[23]  Moore,et al.  Spin squeezing and reduced quantum noise in spectroscopy. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[24]  Wiseman,et al.  Optimal states and almost optimal adaptive measurements for quantum interferometry , 2000, Physical review letters.

[25]  R. Jozsa,et al.  Quantum Computation and Shor's Factoring Algorithm , 1996 .

[26]  Hood,et al.  Measurement of conditional phase shifts for quantum logic. , 1995, Physical review letters.

[27]  H. Yuen Quantum detection and estimation theory , 1978, Proceedings of the IEEE.

[28]  R. Leighton,et al.  Feynman Lectures on Physics , 1971 .

[29]  P. Kok,et al.  Linear optics and projective measurements alone suffice to create large-photon-number path entanglement , 2001, quant-ph/0109080.

[30]  Pittman,et al.  Demonstration of non-deterministic quantum logic operations using linear optical elements , 2002, QELS 2002.

[31]  M. S. Zubairy,et al.  Quantum optics: Frontmatter , 1997 .

[32]  Moore,et al.  Quantum projection noise: Population fluctuations in two-level systems. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[33]  G. Agarwal,et al.  Comment on "Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit". , 2001, Physical review letters.

[34]  J. Cirac,et al.  Quantum Computations with Cold Trapped Ions. , 1995, Physical review letters.

[35]  Christopher C. Gerry,et al.  Generation of maximally entangled photonic states with a quantum-optical Fredkin gate , 2001 .

[36]  Artur Ekert Quantum interferometers as quantum computers , 1998 .

[37]  Milburn,et al.  Optimal quantum measurements for phase estimation. , 1995, Physical review letters.

[38]  Abrams,et al.  Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit , 1999, Physical review letters.

[39]  Philippe Bouyer,et al.  Heisenberg-limited spectroscopy with degenerate Bose-Einstein gases , 1997 .

[40]  Colin P. Williams,et al.  Quantum-interferometric optical lithography: Towards arbitrary two-dimensional patterns , 2001 .

[41]  Phase measurement in quantum optics , 1992 .

[42]  C. Caves Quantum Mechanical Noise in an Interferometer , 1981 .

[43]  Ou Complementarity and Fundamental Limit in Precision Phase Measurement. , 1996, Physical review letters.

[44]  E. Knill,et al.  A scheme for efficient quantum computation with linear optics , 2001, Nature.

[45]  Holland,et al.  Interferometric detection of optical phase shifts at the Heisenberg limit. , 1993, Physical review letters.

[46]  Wineland,et al.  Optimal frequency measurements with maximally correlated states. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[47]  Eli Yablonovitch,et al.  Optical projection lithography at half the Rayleigh resolution limit by two-photon exposure , 1999 .

[48]  M. Scully,et al.  Is spin coherence like Humpty-Dumpty? I. Simplified treatment , 1988 .

[49]  Agarwal,et al.  Atomic states with spectroscopic squeezing. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[50]  Ueda,et al.  Nonlinear-interferometric generation of number-phase-correlated fermion states. , 1991, Physical review letters.

[51]  Andrew G. Glen,et al.  APPL , 2001 .

[52]  Colin P. Williams,et al.  Practical quantum repeaters with linear optics and double-photon guns , 2002, quant-ph/0203134.

[53]  Milburn,et al.  Quantum optical Fredkin gate. , 1989, Physical review letters.

[54]  J. D. Franson,et al.  Probabilistic quantum logic operations using polarizing beam splitters , 2001, quant-ph/0107091.

[55]  J. Cirac,et al.  Improvement of frequency standards with quantum entanglement , 1997, quant-ph/9707014.