Transport and Mechanical Properties of High-ZT Mg2.08Si0.4−xSn0.6Sbx Thermoelectric Materials
暂无分享,去创建一个
E. Case | R. Schmidt | Xu Lu | T. Hogan | P. Gao | Isil Berkun | Matthew F. Luzenski | Patricia Bordon Sarac
[1] O. C. Zienkiewicz,et al. The Finite Element Method for Solid and Structural Mechanics , 2013 .
[2] D. Morelli,et al. Room temperature mechanical properties of natural-mineral-based thermoelectrics , 2013, Journal of Materials Science.
[3] M. Søndergaard,et al. Thermoelectric Properties of the Entire Composition Range in Mg2Si0.9925−xSnxSb0.0075 , 2013, Journal of Electronic Materials.
[4] Gloria J. Lehr,et al. Room temperature mechanical properties of polycrystalline YbAl3, a promising low temperature thermoelectric material , 2013 .
[5] M. Kanatzidis,et al. High-performance bulk thermoelectrics with all-scale hierarchical architectures , 2012, Nature.
[6] Wei Liu,et al. Convergence of conduction bands as a means of enhancing thermoelectric performance of n-type Mg2Si(1-x)Sn(x) solid solutions. , 2012, Physical review letters.
[7] Yuhong Zhao,et al. Electronic structural, elastic properties and thermodynamics of Mg17Al12, Mg2Si and Al2Y phases from first-principles calculations , 2012 .
[8] Xinbing Zhao,et al. Roles of interstitial Mg in improving thermoelectric properties of Sb-doped Mg2Si0.4Sn0.6 solid solutions , 2012 .
[9] Richard W Siegel,et al. A new class of doped nanobulk high-figure-of-merit thermoelectrics by scalable bottom-up assembly. , 2012, Nature materials.
[10] E. Case,et al. Room-Temperature Mechanical Properties and Slow Crack Growth Behavior of Mg2Si Thermoelectric Materials , 2012, Journal of Electronic Materials.
[11] E. Lara‐Curzio,et al. Temperature-dependent Young's modulus, shear modulus and Poisson's ratio of p-type Ce0.9Fe3.5Co0.5Sb12 and n-type Co0.95Pd0.05Te0.05Sb3 skutterudite thermoelectric materials , 2012 .
[12] C. Uher,et al. Optimized Thermoelectric Properties of Sb-Doped Mg2(1+z)Si0.5–ySn0.5Sby through Adjustment of the Mg Content , 2011 .
[13] E. Mueller,et al. Effect of vacancies on the thermoelectric properties of Mg2Si1−xSbx(0⩽x⩽0.1) , 2011 .
[14] Xinbing Zhao,et al. Flux synthesis and thermoelectric properties of eco-friendly Sb doped Mg2Si0.5Sn0.5 solid solutions for energy harvesting , 2011 .
[15] H. Scherrer,et al. Mg-Vacancy-Induced Semiconducting Properties in Mg2Si1–xSbx from Electronic Structure Calculations , 2010 .
[16] Qian Zhang,et al. Bulk Nanostructured Thermoelectric Materials: Preparation, Structure and Properties , 2010 .
[17] J. Sakamoto,et al. Room temperature Young's modulus, shear modulus, and Poisson's ratio of Ce0.9Fe3.5Co0.5Sb12 and Co0.95Pd0.05Te0.05Sb3 skutterudite materials , 2010 .
[18] H. Kabelka,et al. Mechanical properties of filled antimonide skutterudites , 2010 .
[19] Edward J. Timm,et al. Room temperature Young's modulus, shear modulus, Poisson's ratio and hardness of PbTe–PbS thermoelectric materials , 2010 .
[20] M. Vedernikov,et al. Kinetic properties of p-Mg2SixSn1 − x solid solutions for x < 0.4 , 2009 .
[21] M. Kanatzidis,et al. The high-temperature elastic moduli of polycrystalline PbTe measured by resonant ultrasound spectroscopy , 2008 .
[22] H. Schock,et al. Hardness as a function of composition for n-type LAST thermoelectric material , 2008 .
[23] H. Schock,et al. Young's modulus as a function of composition for an n-type lead–antimony–silver–telluride (LAST) thermoelectric material , 2007 .
[24] S. Sinogeikin,et al. Sound velocities and single-crystal elasticity of orthoenstatite to 1073 K at ambient pressure , 2007 .
[25] E. A. Gurieva,et al. Highly effective Mg 2 Si 1 − x Sn x thermoelectrics , 2006 .
[26] Z. A. Munir,et al. The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method , 2006 .
[27] J. K. Solberg,et al. Mechanical properties of FeSi (ε), FeSi2 (ζα) and Mg2Si , 2002 .
[28] M. Aliabadi. Thermomechanical Fatigue and Fracture , 2001 .
[29] Victor N. Kaliakin,et al. Introduction to Approximate Solution Techniques, Numerical Modeling, and Finite Element Methods , 2001 .
[30] Norman A. Fleck,et al. Crack channelling and spalling in a plate due to thermal shock loading , 2000 .
[31] D. Rowe. CRC Handbook of Thermoelectrics , 1995 .
[32] R. Varin,et al. Magnesium silicide intermetallic alloys , 1993, Metallurgical and Materials Transactions A.
[33] Moayyed A. Hussain,et al. The maximum possible conversion efficiency of silicon‐germanium thermoelectric generators , 1991 .
[34] Y. P. Varshni. Temperature Dependence of the Elastic Constants , 1970 .
[35] L. C. Davis,et al. Elastic constants and calculated lattice vibration frequencies of Mg2Sn , 1966 .
[36] O. Anderson,et al. A simplified method for calculating the debye temperature from elastic constants , 1963 .
[37] J. B. Wachtman,et al. Exponential Temperature Dependence of Young's Modulus for Several Oxides , 1961 .
[38] R. Keyes. High-Temperature Thermal Conductivity of Insulating Crystals: Relationship to the Melting Point , 1959 .
[39] S. Manson,et al. Thermal Stress and Low-Cycle Fatigue , 2020, Encyclopedia of Continuum Mechanics.
[40] Harada Hiroshi. Thermomechanical fatigue and fracture characteristics of Ni-base single crystal superalloys , 2012 .
[41] John L. Sarrao,et al. Resonant ultrasound spectroscopy : applications to physics, materials measurements, and nondestructive evaluation , 1997 .
[42] M. Matthewson,et al. Mechanical properties of ceramics , 1996 .
[43] W. Whitten,et al. Elastic constants and lattice vibration frequencies of Mg2Si , 1965 .
[44] L. Landau,et al. statistical-physics-part-1 , 1958 .
[45] N. Mott,et al. Electronic Processes In Non-Crystalline Materials , 1940 .
[46] R. Franz,et al. Ueber die Wärme-Leitungsfähigkeit der Metalle , 1853 .