Transport and Mechanical Properties of High-ZT Mg2.08Si0.4−xSn0.6Sbx Thermoelectric Materials

[1]  O. C. Zienkiewicz,et al.  The Finite Element Method for Solid and Structural Mechanics , 2013 .

[2]  D. Morelli,et al.  Room temperature mechanical properties of natural-mineral-based thermoelectrics , 2013, Journal of Materials Science.

[3]  M. Søndergaard,et al.  Thermoelectric Properties of the Entire Composition Range in Mg2Si0.9925−xSnxSb0.0075 , 2013, Journal of Electronic Materials.

[4]  Gloria J. Lehr,et al.  Room temperature mechanical properties of polycrystalline YbAl3, a promising low temperature thermoelectric material , 2013 .

[5]  M. Kanatzidis,et al.  High-performance bulk thermoelectrics with all-scale hierarchical architectures , 2012, Nature.

[6]  Wei Liu,et al.  Convergence of conduction bands as a means of enhancing thermoelectric performance of n-type Mg2Si(1-x)Sn(x) solid solutions. , 2012, Physical review letters.

[7]  Yuhong Zhao,et al.  Electronic structural, elastic properties and thermodynamics of Mg17Al12, Mg2Si and Al2Y phases from first-principles calculations , 2012 .

[8]  Xinbing Zhao,et al.  Roles of interstitial Mg in improving thermoelectric properties of Sb-doped Mg2Si0.4Sn0.6 solid solutions , 2012 .

[9]  Richard W Siegel,et al.  A new class of doped nanobulk high-figure-of-merit thermoelectrics by scalable bottom-up assembly. , 2012, Nature materials.

[10]  E. Case,et al.  Room-Temperature Mechanical Properties and Slow Crack Growth Behavior of Mg2Si Thermoelectric Materials , 2012, Journal of Electronic Materials.

[11]  E. Lara‐Curzio,et al.  Temperature-dependent Young's modulus, shear modulus and Poisson's ratio of p-type Ce0.9Fe3.5Co0.5Sb12 and n-type Co0.95Pd0.05Te0.05Sb3 skutterudite thermoelectric materials , 2012 .

[12]  C. Uher,et al.  Optimized Thermoelectric Properties of Sb-Doped Mg2(1+z)Si0.5–ySn0.5Sby through Adjustment of the Mg Content , 2011 .

[13]  E. Mueller,et al.  Effect of vacancies on the thermoelectric properties of Mg2Si1−xSbx(0⩽x⩽0.1) , 2011 .

[14]  Xinbing Zhao,et al.  Flux synthesis and thermoelectric properties of eco-friendly Sb doped Mg2Si0.5Sn0.5 solid solutions for energy harvesting , 2011 .

[15]  H. Scherrer,et al.  Mg-Vacancy-Induced Semiconducting Properties in Mg2Si1–xSbx from Electronic Structure Calculations , 2010 .

[16]  Qian Zhang,et al.  Bulk Nanostructured Thermoelectric Materials: Preparation, Structure and Properties , 2010 .

[17]  J. Sakamoto,et al.  Room temperature Young's modulus, shear modulus, and Poisson's ratio of Ce0.9Fe3.5Co0.5Sb12 and Co0.95Pd0.05Te0.05Sb3 skutterudite materials , 2010 .

[18]  H. Kabelka,et al.  Mechanical properties of filled antimonide skutterudites , 2010 .

[19]  Edward J. Timm,et al.  Room temperature Young's modulus, shear modulus, Poisson's ratio and hardness of PbTe–PbS thermoelectric materials , 2010 .

[20]  M. Vedernikov,et al.  Kinetic properties of p-Mg2SixSn1 − x solid solutions for x < 0.4 , 2009 .

[21]  M. Kanatzidis,et al.  The high-temperature elastic moduli of polycrystalline PbTe measured by resonant ultrasound spectroscopy , 2008 .

[22]  H. Schock,et al.  Hardness as a function of composition for n-type LAST thermoelectric material , 2008 .

[23]  H. Schock,et al.  Young's modulus as a function of composition for an n-type lead–antimony–silver–telluride (LAST) thermoelectric material , 2007 .

[24]  S. Sinogeikin,et al.  Sound velocities and single-crystal elasticity of orthoenstatite to 1073 K at ambient pressure , 2007 .

[25]  E. A. Gurieva,et al.  Highly effective Mg 2 Si 1 − x Sn x thermoelectrics , 2006 .

[26]  Z. A. Munir,et al.  The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method , 2006 .

[27]  J. K. Solberg,et al.  Mechanical properties of FeSi (ε), FeSi2 (ζα) and Mg2Si , 2002 .

[28]  M. Aliabadi Thermomechanical Fatigue and Fracture , 2001 .

[29]  Victor N. Kaliakin,et al.  Introduction to Approximate Solution Techniques, Numerical Modeling, and Finite Element Methods , 2001 .

[30]  Norman A. Fleck,et al.  Crack channelling and spalling in a plate due to thermal shock loading , 2000 .

[31]  D. Rowe CRC Handbook of Thermoelectrics , 1995 .

[32]  R. Varin,et al.  Magnesium silicide intermetallic alloys , 1993, Metallurgical and Materials Transactions A.

[33]  Moayyed A. Hussain,et al.  The maximum possible conversion efficiency of silicon‐germanium thermoelectric generators , 1991 .

[34]  Y. P. Varshni Temperature Dependence of the Elastic Constants , 1970 .

[35]  L. C. Davis,et al.  Elastic constants and calculated lattice vibration frequencies of Mg2Sn , 1966 .

[36]  O. Anderson,et al.  A simplified method for calculating the debye temperature from elastic constants , 1963 .

[37]  J. B. Wachtman,et al.  Exponential Temperature Dependence of Young's Modulus for Several Oxides , 1961 .

[38]  R. Keyes High-Temperature Thermal Conductivity of Insulating Crystals: Relationship to the Melting Point , 1959 .

[39]  S. Manson,et al.  Thermal Stress and Low-Cycle Fatigue , 2020, Encyclopedia of Continuum Mechanics.

[40]  Harada Hiroshi Thermomechanical fatigue and fracture characteristics of Ni-base single crystal superalloys , 2012 .

[41]  John L. Sarrao,et al.  Resonant ultrasound spectroscopy : applications to physics, materials measurements, and nondestructive evaluation , 1997 .

[42]  M. Matthewson,et al.  Mechanical properties of ceramics , 1996 .

[43]  W. Whitten,et al.  Elastic constants and lattice vibration frequencies of Mg2Si , 1965 .

[44]  L. Landau,et al.  statistical-physics-part-1 , 1958 .

[45]  N. Mott,et al.  Electronic Processes In Non-Crystalline Materials , 1940 .

[46]  R. Franz,et al.  Ueber die Wärme-Leitungsfähigkeit der Metalle , 1853 .