Identifying microRNAs involved in vestibular compensation using vestibular nucleus of the rat

..................................................................................................i

[1]  M. Dutia,et al.  Mechanisms of vestibular compensation: recent advances , 2010, Current opinion in otolaryngology & head and neck surgery.

[2]  Enza Maria Valente,et al.  Joubert Syndrome and related disorders , 2010, Orphanet journal of rare diseases.

[3]  Michael T. McManus,et al.  Dicer1 and miR-219 Are Required for Normal Oligodendrocyte Differentiation and Myelination , 2010, Neuron.

[4]  P. Sharp,et al.  Regulation of Synaptic Structure and Function by FMRP-Associated MicroRNAs miR-125 b and miR-132 , 2010 .

[5]  M. Lacour,et al.  Neurogenesis and astrogenesis contribution to recovery of vestibular functions in the adult cat following unilateral vestibular neurectomy: cellular and behavioral evidence , 2009, Neuroscience.

[6]  Michael C Schubert,et al.  Disorders of balance and vestibular function in US adults: data from the National Health and Nutrition Examination Survey, 2001-2004. , 2009, Archives of internal medicine.

[7]  Thomas Lempert,et al.  Burden of dizziness and vertigo in the community. , 2008, Archives of internal medicine.

[8]  Filip Bergquist,et al.  Role of the commissural inhibitory system in vestibular compensation in the rat , 2008, The Journal of physiology.

[9]  M. Lacour,et al.  New neurons in the vestibular nuclei complex after unilateral vestibular neurectomy in the adult cat , 2007, The European journal of neuroscience.

[10]  M. Dutia,et al.  Changes in protein expression in the rat medial vestibular nuclei during vestibular compensation , 2006, The Journal of physiology.

[11]  Michael E. Greenberg,et al.  A brain-specific microRNA regulates dendritic spine development , 2006, Nature.

[12]  Maryann E Martone,et al.  Dicer and eIF2c are enriched at postsynaptic densities in adult mouse brain and are modified by neuronal activity in a calpain‐dependent manner , 2005, Journal of neurochemistry.

[13]  H. Straka,et al.  Intrinsic membrane properties of vertebrate vestibular neurons: Function, development and plasticity , 2005, Progress in Neurobiology.

[14]  Anton J. Enright,et al.  Materials and Methods Figs. S1 to S4 Tables S1 to S5 References and Notes Micrornas Regulate Brain Morphogenesis in Zebrafish , 2022 .

[15]  C. Sekirnjak,et al.  Long-Lasting Increases in Intrinsic Excitability Triggered by Inhibition , 2003, Neuron.

[16]  Bruce A. Hay,et al.  The Drosophila MicroRNA Mir-14 Suppresses Cell Death and Is Required for Normal Fat Metabolism , 2003, Current Biology.

[17]  A. Johnston,et al.  Role of the flocculus in mediating vestibular nucleus neuron plasticity during vestibular compensation in the rat , 2002, The Journal of physiology.

[18]  Cynthia L. Darlington,et al.  Molecular mechanisms of recovery from vestibular damage in mammals: recent advances , 2000, Progress in Neurobiology.

[19]  P. Vidal,et al.  Vestibular compensation modifies the sensitivity of vestibular neurones to inhibitory amino acids , 2000, Neuroreport.

[20]  Toshiaki Yamanaka,et al.  Rapid compensatory changes in GABA receptor efficacy in rat vestibular neurones after unilateral labyrinthectomy , 2000, The Journal of physiology.

[21]  I S Curthoys,et al.  Vestibular compensation and substitution. , 2000, Current opinion in neurology.

[22]  M. Dutia,et al.  Cellular basis of vestibular compensation: changes in intrinsic excitability of MVN neurones , 1997, Neuroreport.

[23]  H Shimazu,et al.  A mechanism of central compensation of vestibular function following hemilabyrinthectomy. , 1966, Journal of neurophysiology.

[24]  G. Paxinos,et al.  The Rat Brain in Stereotaxic Coordinates , 1983 .