Relations between clones and full monoids

An endoprimal clone is defined via a set of unary operations. It was known before that the endoprimal clone for the set O/sub 4//sup (1)/ of all unary operations on, a k-element set is the least clone J/sub k/ and that the endoprimal clone for the symmetric group S/sub k/ strictly includes J/sub k/. In this paper we consider monoids of unary operations and clones corresponding to such monoids. We define a descending sequence {N/sub i/}/sub i=1//sup k=1/ of monoids lying between O/sub k//sup (1)/ and S/sub k/, and show that the endoprimal clone for N/sub k-1/ is distinct from J/sub k/. Finally we present a characterization of the endoprimal clone for S/sub k/.

[1]  A. Pixley,et al.  The ternary discriminator function in universal algebra , 1971 .

[2]  L. A. Kaluzhnin,et al.  Galois theory for post algebras. I , 1969 .

[3]  Edward Marczewski Homogeneous operations and homogeneous algebras , 1964 .

[4]  Ágnes Szendrei,et al.  Clones in universal algebra , 1986 .

[5]  Ivo G. Rosenberg,et al.  Rigidity problem of autodual clones , 2000, Proceedings 30th IEEE International Symposium on Multiple-Valued Logic (ISMVL 2000).

[6]  Masahiro Miyakawa Semirigidity problems in k-valued logic , 1999, Proceedings 1999 29th IEEE International Symposium on Multiple-Valued Logic (Cat. No.99CB36329).

[7]  R. Pöschel,et al.  Funktionen- und Relationenalgebren : ein Kapitel der diskreten Mathematik , 1979 .

[8]  Ivo G. Rosenberg,et al.  Semirigid sets of diamond orders , 1996, Discret. Math..

[9]  Reinhard Pöschel,et al.  Funktionen- und Relationenalgebren , 1979 .