A model of dense-plasma atomic structure for equation-of-state calculations
暂无分享,去创建一个
[1] J. Pain,et al. Quantum mechanical model for the study of pressure ionization in the superconfiguration approach , 2006 .
[2] J. Pain,et al. Self-consistent approach for the thermodynamics of ions in dense plasmas in the superconfiguration approximation , 2003 .
[3] J. Pain,et al. New approach to dense plasma thermodynamics in the superconfiguration approximation , 2002 .
[4] F. Perrot,et al. Virial theorem and pressure calculations in the GGA , 2001 .
[5] Thomas Blenski,et al. A superconfiguration code based on the local density approximation , 2000 .
[6] M. Klapisch,et al. The effect of configuration interaction on relativistic transition arrays , 2000 .
[7] T. Lehecka,et al. EFFECT OF CONFIGURATION INTERACTION ON SHIFT WIDTHS AND INTENSITY REDISTRIBUTION OF TRANSITION ARRAYS , 1999 .
[8] C. Blancard,et al. Statistical mechanics of highly charged ion plasmas in local thermodynamic equilibrium , 1997 .
[9] A. Grimaldi,et al. HARTREE-FOCK STATISTICAL APPROACH TO ATOMS AND PHOTOABSORPTION IN PLASMAS , 1997 .
[10] Ishikawa,et al. Pressure ionization in the spherical ion-cell model of dense plasmas and a pressure formula in the relativistic Pauli approximation. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[11] A. Bar-Shalom,et al. Configuration interaction in LTE spectra of heavy elements , 1992 .
[12] Bloom,et al. Computation of spectral arrays in hot plasmas using the Lanczos algorithm. , 1991, Physical Review A. Atomic, Molecular, and Optical Physics.
[13] Goldstein,et al. Super-transition-arrays: A model for the spectral analysis of hot, dense plasma. , 1989, Physical review. A, General physics.
[14] Goldberg,et al. Intermediate-coupling calculation of atomic spectra from hot plasma. , 1986, Physical review. A, General physics.
[15] Ichimaru,et al. Free energies of electron-screened ion plasmas in the hypernetted-chain approximation. , 1986, Physical review. A, General physics.
[16] F. Rogers. Equation of state of dense, partially degenerate, reacting plasmas , 1981 .
[17] F. Perrot. Gradient correction to the statistical electronic free energy at nonzero temperatures: Application to equation-of-state calculations , 1979 .
[18] W. Kohn,et al. CONTINUITY BETWEEN BOUND AND UNBOUND STATES IN A FERMI GAS , 1965 .
[19] N. Metropolis,et al. Equations of State of Elements Based on the Generalized Fermi-Thomas Theory , 1949 .
[20] L. H. Thomas. The calculation of atomic fields , 1927, Mathematical Proceedings of the Cambridge Philosophical Society.
[21] F. Gilleron,et al. Stable method for the calculation of partition functions in the superconfiguration approach. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.
[22] Perrot. Ion-ion interaction and equation of state of a dense plasma: Application to beryllium. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[23] R. More. Pressure Ionization, Resonances, and the Continuity of Bound and Free States , 1985 .
[24] B. Rozsnyai. Relativistic Hartree-Fock-Slater Calculations for Arbitrary Temperature and Matter Density , 1972 .
[25] E. Fermi. Eine statistische Methode zur Bestimmung einiger Eigenschaften des Atoms und ihre Anwendung auf die Theorie des periodischen Systems der Elemente , 1928 .