Extending Partial Representations of Circle Graphs

The partial representation extension problem is a recently introduced generalization of the recognition problem. A circle graph is an intersection graph of chords of a circle. We study the partial representation extension problem for circle graphs, where the input consists of a graph G and a partial representation $\mathcal{R'}$ giving some pre-drawn chords that represent an induced subgraph of G. The question is whether one can extend $\mathcal{R'}$ to a representation $\mathcal{R}$ of the entire G, i.e., whether one can draw the remaining chords into a partially pre-drawn representation. Our main result is a polynomial-time algorithm for partial representation extension of circle graphs. To show this, we describe the structure of all representation a circle graph based on split decomposition. This can be of an independent interest.

[1]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[2]  Patrice Ossona de Mendez,et al.  On a Characterization of Gauss Codes , 1999, Discret. Comput. Geom..

[3]  Sang-il Oum,et al.  Rank-width and vertex-minors , 2005, J. Comb. Theory, Ser. B.

[4]  W. Marsden I and J , 2012 .

[5]  Walid Naji Graphes de cordes : une caractérisation et ses applications. (Chordal graphs: a characterization and its applications) , 1985 .

[6]  Yota Otachi,et al.  Extending Partial Representations of Proper and Unit Interval Graphs , 2012, Algorithmica.

[7]  Paul Dorbec,et al.  Contact Representations of Planar Graphs: Extending a Partial Representation is Hard , 2014, WG.

[8]  Jeremy P. Spinrad,et al.  Efficient graph representations , 2003, Fields Institute monographs.

[9]  Wen-Lian Hsu,et al.  Recognizing circle graphs in polynomial time , 1985, 26th Annual Symposium on Foundations of Computer Science (sfcs 1985).

[10]  Pavel Klav ´ ik Extending Partial Representations of Interval Graphs , 2012 .

[11]  A. Itai,et al.  QUEUES, STACKS AND GRAPHS , 1971 .

[12]  Alexandr V. Kostochka,et al.  Covering and coloring polygon-circle graphs , 1997, Discret. Math..

[13]  Maurizio Patrignani On Extending a Partial Straight-Line Drawing , 2005, Graph Drawing.

[14]  André Bouchet,et al.  Unimodularity and circle graphs , 1987, Discret. Math..

[15]  Jaroslav Opatrny,et al.  Total Ordering Problem , 1979, SIAM J. Comput..

[16]  Francisco J. Soulignac Minimal and short representations of unit interval and unit circular-arc graphs , 2014, ArXiv.

[17]  Hubert de Fraysseix,et al.  Local complementation and interlacement graphs , 1981, Discret. Math..

[18]  Jeremy P. Spinrad,et al.  Recognition of Circle Graphs , 1994, J. Algorithms.

[19]  Jan Kratochvíl,et al.  Testing planarity of partially embedded graphs , 2010, SODA '10.

[20]  Ignaz Rutter,et al.  Simultaneous PQ-Ordering with Applications to Constrained Embedding Problems , 2011, SODA.

[21]  Yota Otachi,et al.  Bounded Representations of Interval and Proper Interval Graphs , 2013, ISAAC.

[22]  Bruno Courcelle,et al.  Circle graphs and monadic second-order logic , 2008, J. Appl. Log..

[23]  Elias Dahlhaus,et al.  Parallel Algorithms for Hierarchical Clustering and Applications to Split Decomposition and Parity Graph Recognition , 2000, J. Algorithms.

[24]  Peter Damaschke,et al.  The Hamiltonian Circuit Problem for Circle Graphs is NP-Complete , 1989, Inf. Process. Lett..

[25]  Emeric Gioan,et al.  Practical and Efficient Circle Graph Recognition , 2011, Algorithmica.

[26]  Gary L. Miller,et al.  The Complexity of Coloring Circular Arcs and Chords , 1980, SIAM J. Algebraic Discret. Methods.

[27]  Stephen G. Kobourov,et al.  Simultaneous Embedding of Planar Graphs , 2012, Handbook of Graph Drawing and Visualization.

[28]  Yota Otachi,et al.  Extending Partial Representations of Subclasses of Chordal Graphs , 2012, ISAAC.

[29]  Pavel Klavík,et al.  Extending Partial Representations of Interval Graphs , 2011, TAMC.

[30]  Pavel Klavík,et al.  Extending Partial Representations of Function Graphs and Permutation Graphs , 2012, ESA.

[31]  Fanica Gavril,et al.  Maximum weight independent sets and cliques in intersection graphs of filaments , 2000, Inf. Process. Lett..

[32]  Yota Otachi,et al.  Linear-time Algorithm for Partial Representation Extension of Interval Graphs , 2013, ArXiv.

[33]  Kellogg S. Booth,et al.  Testing for the Consecutive Ones Property, Interval Graphs, and Graph Planarity Using PQ-Tree Algorithms , 1976, J. Comput. Syst. Sci..

[34]  Yota Otachi,et al.  Extending partial representations of subclasses of chordal graphs , 2015, Theor. Comput. Sci..

[35]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[36]  André Bouchet,et al.  Reducing prime graphs and recognizing circle graphs , 1987, Comb..

[37]  W. Cunningham Decomposition of Directed Graphs , 1982 .

[38]  Pavel Klavík,et al.  Minimal Obstructions for Partial Representations of Interval Graphs , 2014, ISAAC.

[39]  Anna Lubiw,et al.  The Simultaneous Representation Problem for Chordal, Comparability and Permutation Graphs , 2009, WADS.