Discovering spatio-temporal causal interactions in traffic data streams

The detection of outliers in spatio-temporal traffic data is an important research problem in the data mining and knowledge discovery community. However to the best of our knowledge, the discovery of relationships, especially causal interactions, among detected traffic outliers has not been investigated before. In this paper we propose algorithms which construct outlier causality trees based on temporal and spatial properties of detected outliers. Frequent substructures of these causality trees reveal not only recurring interactions among spatio-temporal outliers, but potential flaws in the design of existing traffic networks. The effectiveness and strength of our algorithms are validated by experiments on a very large volume of real taxi trajectories in an urban road network.

[1]  Walid G. Aref,et al.  Periodicity detection in time series databases , 2005, IEEE Transactions on Knowledge and Data Engineering.

[2]  Srinivasan Parthasarathy,et al.  Anomaly detection and spatio-temporal analysis of global climate system , 2009, SensorKDD '09.

[3]  Nikos Mamoulis,et al.  Mining frequent spatio-temporal sequential patterns , 2005, Fifth IEEE International Conference on Data Mining (ICDM'05).

[4]  Paolo Frasconi,et al.  Collective Traffic Forecasting , 2010, ECML/PKDD.

[5]  Jiawei Han,et al.  Mining periodic behaviors for moving objects , 2010, KDD.

[6]  Arnold P. Boedihardjo,et al.  GLS-SOD: a generalized local statistical approach for spatial outlier detection , 2010, KDD '10.

[7]  Xing Xie,et al.  T-drive: driving directions based on taxi trajectories , 2010, GIS '10.

[8]  Regina Estkowski,et al.  No steiner point subdivision simplification is NP-complete , 1998, Canadian Conference on Computational Geometry.

[9]  Sanjay Chawla,et al.  On local spatial outliers , 2004, Fourth IEEE International Conference on Data Mining (ICDM'04).

[10]  Yan Liu,et al.  Spatial-temporal causal modeling for climate change attribution , 2009, KDD.

[11]  Jae-Gil Lee,et al.  Trajectory Outlier Detection: A Partition-and-Detect Framework , 2008, 2008 IEEE 24th International Conference on Data Engineering.

[12]  Albert G. Greenberg,et al.  Network anomography , 2005, IMC '05.

[13]  Sanjay Chawla,et al.  Spatio-temporal Outlier Detection in Precipitation Data , 2008, KDD Workshop on Knowledge Discovery from Sensor Data.

[14]  MamoulisNikos,et al.  Discovery of Periodic Patterns in Spatiotemporal Sequences , 2007 .

[15]  Walid G. Aref,et al.  WARP: time warping for periodicity detection , 2005, Fifth IEEE International Conference on Data Mining (ICDM'05).

[16]  Jennifer Rexford,et al.  Sensitivity of PCA for traffic anomaly detection , 2007, SIGMETRICS '07.

[17]  Martin May,et al.  Applying PCA for Traffic Anomaly Detection: Problems and Solutions , 2009, IEEE INFOCOM 2009.

[18]  Nikos Mamoulis,et al.  Discovering Partial Periodic Patterns in Discrete Data Sequences , 2004, PAKDD.

[19]  Lei Chen,et al.  Robust and fast similarity search for moving object trajectories , 2005, SIGMOD '05.

[20]  Nikos Mamoulis,et al.  Discovery of Periodic Patterns in Spatiotemporal Sequences , 2007, IEEE Transactions on Knowledge and Data Engineering.

[21]  Guangzhong Sun,et al.  Driving with knowledge from the physical world , 2011, KDD.

[22]  Dawei Liu,et al.  Efficient anomaly monitoring over moving object trajectory streams , 2009, KDD.

[23]  Christophe Diot,et al.  Diagnosing network-wide traffic anomalies , 2004, SIGCOMM.

[24]  Azriel Rosenfeld,et al.  Connectivity in Digital Pictures , 1970, JACM.

[25]  Kenji Yamanishi,et al.  Network anomaly detection based on Eigen equation compression , 2009, KDD.

[26]  Jae-Gil Lee,et al.  Trajectory clustering: a partition-and-group framework , 2007, SIGMOD '07.

[27]  Nikos Pelekis,et al.  Unsupervised Trajectory Sampling , 2010, ECML/PKDD.