Ferrocene functional polymer brushes on indium tin oxide via surface-initiated atom transfer radical polymerization.

The synthesis and electrochemical characterization of ferrocene functional polymethacrylate brushes on indium tin oxide (ITO) electrodes using surface-initiated atom transfer radical polymerization (SI-ATRP) is reported. SI-ATRP of ferrocene-containing methacrylate (FcMA) monomers from a phosphonic acid initiator-modified ITO substrate yielded well-defined homo- and block (co)polymer brushes of varying molar mass (4,000 to 37,000 g/mol). Correlation of both electrochemical properties and brush thicknesses confirmed controlled SI-ATRP from modified ITO surfaces. The preparation of block copolymer brushes with varying sequences of FcMA segments was conducted to interrogate the effects of spacing from the ITO electrode surface on the electrochemical properties of a tethered electroactive film.

[1]  J. Lutz,et al.  Polymerization of oligo(ethylene glycol) (meth)acrylates: Toward new generations of smart biocompatible materials , 2008 .

[2]  A. Bard,et al.  Polymer films on electrodes: Part II. Film structure and mechanism of electron transfer with electrodeposited poly(vinylferrocene) , 1980 .

[3]  Neal R. Armstrong,et al.  Phosphonic Acid Modification of Indium−Tin Oxide Electrodes: Combined XPS/UPS/Contact Angle Studies† , 2008 .

[4]  P. Dutta,et al.  Covalently bound hole-injecting nanostructures. Systematics of molecular architecture, thickness, saturation, and electron-blocking characteristics on organic light-emitting diode luminance, turn-on voltage, and quantum efficiency. , 2005, Journal of the American Chemical Society.

[5]  G. Seytre,et al.  Influence of nitroxide structure on polystyrene brushes “grafted‐from” silicon wafers , 2008 .

[6]  W. Huck,et al.  Polymer brushes via surface-initiated polymerizations. , 2004, Chemical Society reviews.

[7]  Krzysztof Matyjaszewski,et al.  Polymers at interfaces : Using atom transfer radical polymerization in the controlled growth of homopolymers and block copolymers from silicon surfaces in the absence of untethered sacrificial initiator , 1999 .

[8]  D. R. Rolison,et al.  Comparison of X-ray Photoelectron Spectroscopy and Cyclic Voltammetry for the Determination of Polymeric Film Thickness of Ruthenium Vinylbipyridine and Vinylferrocene Deposited on Electrodes , 1981 .

[9]  Debra R. Rolison,et al.  Diffusional charge transport through ultrathin films of radiofrequency plasma polymerized vinylferrocene at low temperature , 1980 .

[10]  Thomas W. Smith,et al.  Voltammetric behavior of poly(vinylferrocene) , 1976 .

[11]  Neal R Armstrong,et al.  Organic/Organic' heterojunctions: organic light emitting diodes and organic photovoltaic devices. , 2009, Macromolecular rapid communications.

[12]  Didier Benoit,et al.  Controlled Synthesis of Polymer Brushes by “Living” Free Radical Polymerization Techniques , 1999 .

[13]  B. Vercelli,et al.  Adsorption of Hexylferrocene Phosphonic Acid on Indium−Tin Oxide Electrodes. Evidence of Strong Interchain Interactions in Ferrocene Self-Assembled Monolayers , 2003 .

[14]  J. Reynolds,et al.  Poly(3,4‐ethylenedioxythiophene) and Its Derivatives: Past, Present, and Future , 2000 .

[15]  A. Epstein,et al.  INTERFACE CONTROL OF LIGHT-EMITTING DEVICES BASED ON PYRIDINE-CONTAINING CONJUGATED POLYMERS , 1999 .

[16]  W. Brittain,et al.  Polymer brushes: surface-immobilized macromolecules , 2000 .

[17]  Tobin J. Marks,et al.  Indium Tin Oxide Alternatives—High Work Function Transparent Conducting Oxides as Anodes for Organic Light‐Emitting Diodes , 2001 .

[18]  Bernard Kippelen,et al.  Interface modification of ITO thin films: organic photovoltaic cells , 2003 .

[19]  E. Neuse,et al.  Ferrocene-Containing Polymers. X. Isomeric Bis(ferrocenylmethyl)ferrocenes , 1965 .

[20]  N. Armstrong,et al.  Theoretical Characterization of the Indium Tin Oxide Surface and of Its Binding Sites for Adsorption of Phosphonic Acid Monolayers , 2008 .

[21]  Norbert Koch,et al.  Organic electronic devices and their functional interfaces. , 2007, Chemphyschem : a European journal of chemical physics and physical chemistry.

[22]  C. Dulcey,et al.  Phenylphosphonic acid functionalization of indium tin oxide: surface chemistry and work functions. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[23]  Judith L. Jenkins,et al.  Electrodeposited, "textured" poly(3-hexyl-thiophene) (e-P3HT) films for photovoltaic applications , 2008 .

[24]  G. Zotti,et al.  Adsorption of Carboxyl-Terminated Dithiophene and Terthiophene Molecules on ITO Electrodes and Their Electrochemical Coupling to Polymer Layers. The Influence of Molecular Geometry , 1998 .

[25]  Peter J. Hotchkiss,et al.  Effect of phosphonic acid surface modifiers on the work function of indium tin oxide and on the charge injection barrier into organic single-layer diodes , 2009 .

[26]  R. Advíncula Polymer brushes by anionic and cationic surface-initiated polymerization (SIP) , 2006 .

[27]  G. Zotti,et al.  Adsorption of Ferrocene Compounds on Indium−Tin−Oxide Electrodes. Enhancement of Adsorption by Decomposition of Ferrocenium Molecules by Oxygen , 1998 .

[28]  Walter J. Doherty,et al.  Potential-modulated, attenuated total reflectance spectroscopy of poly(3,4-ethylenedioxythiophene) and poly(3,4-ethylenedioxythiophene methanol) copolymer films on indium-tin oxide. , 2006, The journal of physical chemistry. B.

[29]  Walter J. Doherty,et al.  Electrochemical Copolymerization and Spectroelectrochemical Characterization of 3,4-Ethylenedioxythiophene and 3,4-Ethylenedioxythiophene−Methanol Copolymers on Indium−Tin Oxide , 2006 .

[30]  Martin R. Willis,et al.  Organic electroluminescent devices: enhanced carrier injection using SAM derivatized ITO electrodes , 2000 .

[31]  Krzysztof Matyjaszewski,et al.  Nanostructured functional materials prepared by atom transfer radical polymerization , 2009, Nature Chemistry.

[32]  Craig J. Hawker,et al.  The Convergence of Synthetic Organic and Polymer Chemistries , 2005, Science.

[33]  H. Merlitz,et al.  Polymer brushes for surface tuning. , 2009, Macromolecular rapid communications.

[34]  I. Manners Ring‐opening polymerization of metallocenophanes , 1994 .

[35]  Takeshi Fukuda,et al.  Fabrication and electrochemical properties of high-density graft films with ferrocene moieties on ITO substrates , 2005 .

[36]  A. Studer,et al.  Polymer brushes by nitroxide-mediated polymerization. , 2009, Macromolecular rapid communications.

[37]  K. Matyjaszewski,et al.  Synthesis of Polymer Brushes Using Atom Transfer Radical Polymerization , 2003 .

[38]  Ian Manners,et al.  Organometallic Polymers with Transition Metals in the Main Chain. , 1999, Chemical reviews.

[39]  H. Abruña Coordination chemistry in two dimensions: chemically modified electrodes , 1988 .

[40]  Wilhelm T S Huck,et al.  Enhancement of charge-transport characteristics in polymeric films using polymer brushes. , 2006, Nano letters.

[41]  C. P. Horwitz,et al.  Ferrocene polymers with "polyaniline" backbones , 1990 .

[42]  J. Reynolds,et al.  Electrochemistry of Poly(3,4‐alkylenedioxythiophene) Derivatives , 2003 .

[43]  R. Bertoncello,et al.  Surface-initiated polymerization of thiophene and pyrrole monomers on poly(terthiophene) films and oligothiophene monolayers , 2005 .

[44]  N. Armstrong,et al.  Poly(3,4-ethylenedioxythiophene)-semiconductor nanoparticle composite thin films tethered to indium tin oxide substrates via electropolymerization. , 2007, Journal of the American Chemical Society.

[45]  A. Moore,et al.  Photoelectrochemistry of Langmuir-Blodgett films of carotenoid pigments on ITO electrodes , 1996 .

[46]  G. Inzelt,et al.  Temperature dependence of the voltammetric response of thin electroactive polymer films , 1985 .

[47]  A. Bard,et al.  Polymer films on electrodes: Part I. The application of poly(vinylferrocene)-coated platinum electrodes as reference electrodes in acetonitrile , 1980 .

[48]  R. B. Tahar,et al.  Tin doped indium oxide thin films: Electrical properties , 1998 .

[49]  T. Marks,et al.  Toward the ideal organic light-emitting diode. The versatility and utility of interfacial tailoring by cross-linked siloxane interlayers. , 2005, Accounts of chemical research.

[50]  Krzysztof Matyjaszewski,et al.  Synthesis of Nanocomposite Organic/Inorganic Hybrid Materials Using Controlled/“Living” Radical Polymerization , 2001 .

[51]  R. Wysocki,et al.  Modification of indium-tin oxide electrodes with thiophene copolymer thin films: optimizing electron transfer to solution probe molecules. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[52]  C. Frisbie,et al.  Systems for orthogonal self-assembly of electroactive monolayers on Au and ITO: an approach to molecular electronics , 1995 .

[53]  C. Gerber,et al.  Molecular structures of lipid monolayers on ITO glass and on graphite imaged by an STM , 1992 .

[54]  Rigoberto C. Advincula,et al.  Grafting Hole-Transport Precursor Polymer Brushes on ITO Electrodes : Surface-Initiated Polymerization and Conjugated Polymer Network Formation of PVK , 2008 .

[55]  J. Lutz,et al.  Living radical polymerization: Use of an excess of nitroxide as a rate moderator , 2001 .

[56]  Shinpei Yamamoto,et al.  Controlled Graft Polymerization of Methyl Methacrylate on Silicon Substrate by the Combined Use of the Langmuir−Blodgett and Atom Transfer Radical Polymerization Techniques , 1998 .

[57]  R. Murray,et al.  Chemically modified electrodes: Part XXII. Solvent effects on the electrochemistry of thin films of plasma polymerized vinylferrocene , 1979 .

[58]  A. Bard,et al.  Electron transfer to and from molecules containing multiple, noninteracting redox centers. Electrochemical oxidation of poly(vinylferrocene) , 1978 .

[59]  Graeme Moad,et al.  Living radical polymerization by the RAFT process , 2005 .

[60]  Wilhelm T S Huck,et al.  Self-organization of nanocrystals in polymer brushes. Application in heterojunction photovoltaic diodes. , 2005, Nano letters.

[61]  O. Stéphan,et al.  Ion binding by poly [4-(pyrrol-1-ylmethyl)benzoic acid] thin films , 1995 .

[62]  Shuqing Sun,et al.  Micrometer and Nanometer Scale Photopatterning of Self-Assembled Monolayers of Phosphonic Acids on Aluminum Oxide , 2007 .

[63]  W. Huck,et al.  Surface grafted polymer brushes as ideal building blocks for "smart" surfaces. , 2006, Physical chemistry chemical physics : PCCP.

[64]  P. Dutta,et al.  Characterization of transparent conducting oxide surfaces using self-assembled electroactive monolayers. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[65]  R. Murray,et al.  Charge-transfer diffusion rates and activity relationships during oxidation and reduction of plasma-polymerized vinylferrocene films , 1981 .

[66]  D. Buttry,et al.  Applications of the quartz crystal microbalance to electrochemistry. Measurement of ion and solvent populations in thin films of poly(vinylferrocene) as functions of redox state , 1989 .

[67]  K. Matyjaszewski,et al.  ATOM TRANSFER RADICAL POLYMERIZATION AND THE SYNTHESIS OF POLYMERIC MATERIALS , 1998 .

[68]  R. Murray,et al.  CHEMICALLY MODIFIED ELECTRODES , 1977 .

[69]  E. Harth,et al.  New polymer synthesis by nitroxide mediated living radical polymerizations. , 2001, Chemical reviews.

[70]  R. Hudson Ferrocene polymers: current architectures, syntheses and utility , 2001 .

[71]  B. Vercelli,et al.  Polythiophene‐ and Polypyrrole‐based Mono‐ and Multilayers , 2008 .

[72]  M. Napier,et al.  Modification of Electrodes with Dicarboxylate Self-Assembled Monolayers for Attachment and Detection of Nucleic Acids , 1997 .

[73]  R. Murray,et al.  Electrochemical reactions of solutes and of electroactive polymer films in low dielectric media: toluene and heptane , 1986 .