Generation of the Mt Kinabalu Granite by Crustal Contamination of Intraplate Magma Modelled by Equilibrated Major Element Assimilation with Fractional Crystallization (EME-AFC)

New geochemical data are presented for the composite units of the Mount Kinabalu granitoid intrusion of Borneo and utilised to explore the discrimination between crustal- and mantle-derived granitic magmas. The geochemical data demonstrate that the units making up this composite intrusion became more potassic through time. This was accompanied by an evolution of isotope ratios from a continental-affinity towards a slightly more mantle-affinity (87Sr/86Sri ∼0·7078; 143Nd/144Ndi ∼0·51245; 206Pb/204Pbi ∼18·756 for the oldest unit compared to 87Sr/86Sri ∼0·7065, 143Nd/144Ndi ∼0·51250 and 206Pb/204Pbi ∼18·721 for the younger units). Oxygen isotope ratios (calculated whole-rock δ18O of +6·5–9·3‰) do not show a clear trend with time. The isotopic data indicate that the magma cannot result only from fractional crystallization of a mantle-derived magma. Alkali metal compositions show that crustal anatexis is also an unsuitable process for genesis of the intrusion. The data indicate that the high-K units were generated by fractional crystallization of a primary, mafic magma, followed by assimilation of the partially melted sedimentary overburden. We present a new, Equilibrated Major Element -Assimilation with Fractional Crystallization (EME-AFC) approach for simultaneously modelling the major element, trace element, and radiogenic and oxygen isotope compositions during such magmatic differentiation; addressing the lack of current AFC modelling approaches for felsic, amphibole- or biotite-bearing systems. We propose that Mt Kinabalu was generated through low degree melting of upwelling fertile metasomatized mantle driven by regional crustal extension in the Late Miocene.

[1]  J. Muraszko,et al.  Tectonic strain recorded by magnetic fabrics (AMS) in plutons, including Mt Kinabalu, Borneo: A tool to explore past tectonic regimes and syn-magmatic deformation , 2019, Journal of Structural Geology.

[2]  P. Ulmer,et al.  Arc crust formation and differentiation constrained by experimental petrology , 2018, American Journal of Science.

[3]  O. Jagoutz,et al.  On the importance of crystallization-differentiation for the generation of SiO2-rich melts and the compositional build-up of arc (and continental) crust , 2018, American Journal of Science.

[4]  R. Hall,et al.  Nature and demise of the Proto-South China Sea , 2017 .

[5]  M. Bitencourt,et al.  On the Eighth Hutton Symposium on Granites and Related Rocks , 2017 .

[6]  R. Hall,et al.  Internal structure and emplacement mechanism of composite plutons: evidence from Mt Kinabalu, Borneo , 2016, Journal of the Geological Society.

[7]  R. Gill Modern Analytical Geochemistry: An Introduction to Quantitative Chemical Analysis Techniques for Earth, Environmental and Materials Scientists , 2016 .

[8]  C. Annen,et al.  Rates of magma transfer in the crust: Insights into magma reservoir recharge and pluton growth , 2014 .

[9]  R. Hall,et al.  South China continental margin signature for sandstones and granites from Palawan, Philippines , 2014 .

[10]  M. Ghiorso,et al.  Thermodynamic Model for Energy-Constrained Open-System Evolution of Crustal Magma Bodies Undergoing Simultaneous Recharge, Assimilation and Crystallization: the Magma Chamber Simulator , 2014 .

[11]  P. Ulmer,et al.  Fractional crystallization of primitive, hydrous arc magmas: an experimental study at 0.7 GPa , 2014, Contributions to Mineralogy and Petrology.

[12]  A. Cullen,et al.  Age and petrology of the Usun Apau and Linau Balui volcanics : windows to central Borneo’s interior. , 2013 .

[13]  R. Hall Contraction and extension in northern Borneo driven by subduction rollback , 2013 .

[14]  G. Nichols,et al.  Provenance and geochronology of Cenozoic sandstones of northern Borneo , 2013 .

[15]  G. Batt,et al.  Neogene rock uplift and erosion in northern Borneo: evidence from the Kinabalu granite, Mount Kinabalu , 2013, Journal of the Geological Society.

[16]  Brian Taylor,et al.  Origin and History of the South China Sea Basin , 2013 .

[17]  L. Baumgartner,et al.  A Detailed Geochemical Study of a Shallow Arc-related Laccolith; the Torres del Paine Mafic Complex (Patagonia) , 2013 .

[18]  H. Behrens,et al.  Amphibole stability in primitive arc magmas: effects of temperature, H2O content, and oxygen fugacity , 2012, Contributions to Mineralogy and Petrology.

[19]  Xuefa Shi,et al.  Oxygen and lead isotope characteristics of granitic rocks from the Nansha block (South China Sea): Implications for their petrogenesis and tectonic affinity , 2011 .

[20]  E. Horsman,et al.  Multiscale magmatic cyclicity, duration of pluton construction, and the paradoxical relationship between tectonism and plutonism in continental arcs , 2011 .

[21]  Mao Jingwen,et al.  Age and geochemistry of granites in Gejiu area, Yunnan province, SW China: Constraints on their petrogenesis and tectonic setting , 2010 .

[22]  M. Ghiorso,et al.  Rhyolite-MELTS: a Modified Calibration of MELTS Optimized for Silica-rich, Fluid-bearing Magmatic Systems , 2010 .

[23]  K. Benn,et al.  Anatomy, emplacement and evolution of a shallow-level, post-tectonic laccolith: the Mt Disappointment pluton, SE Australia , 2010, Journal of the Geological Society.

[24]  M. Thirlwall,et al.  Plio-Pleistocene intra-plate magmatism from the southern Sulu Arc, Semporna peninsula, Sabah, Borneo: Implications for high-Nb basalt in subduction zones , 2010 .

[25]  Xuefa Shi,et al.  Petrology and geochemistry of Mesozoic granitic rocks from the Nansha micro-block, the South China Sea: Constraints on the basement nature , 2010 .

[26]  R. Hall,et al.  Pulsed emplacement of the Mount Kinabalu granite, northern Borneo , 2010, Journal of the Geological Society.

[27]  T. Pettke,et al.  Construction of the granitoid crust of an island arc part I: geochronological and geochemical constraints from the plutonic Kohistan (NW Pakistan) , 2009 .

[28]  P. Ulmer,et al.  Igneous garnet and amphibole fractionation in the roots of island arcs: experimental constraints on andesitic liquids , 2009 .

[29]  E. Horsman,et al.  Emplacement and assembly of shallow intrusions from multiple magma pulses, Henry Mountains, Utah , 2009, Earth and Environmental Science Transactions of the Royal Society of Edinburgh.

[30]  A. Cruden,et al.  Fault-assisted vertical pluton growth: Coastal Cordillera, north Chilean Andes , 2009, Journal of the Geological Society.

[31]  Peter A. Cawood,et al.  Sr-Nd-Pb isotopic constraints on multiple mantle domains for Mesozoic mafic rocks beneath the South China Block hinterland , 2008 .

[32]  R. Shinjo,et al.  Was there Jurassic paleo-Pacific subduction in South China?: Constraints from 40Ar/39Ar dating, elemental and Sr–Nd–Pb isotopic geochemistry of the Mesozoic basalts , 2008 .

[33]  D. Stockli,et al.  Dynamic Magma Systems, Crustal Recycling, and Alteration in the Central Sierra Nevada Batholith: the Oxygen Isotope Record , 2008 .

[34]  Shi Xue-fa,et al.  Major element, trace element, and Sr, Nd and Pb isotope studies of Cenozoic basalts from the South China Sea , 2008 .

[35]  William D. Gosnold,et al.  Episodic construction of batholiths: Insights from the spatiotemporal development of an ignimbrite flare-up , 2007 .

[36]  Long Xiao,et al.  Origin of potassic (C-type) adakite magmas: Experimental and field constraints , 2007 .

[37]  E. Horsman,et al.  Mechanisms and duration of non-tectonically assisted magma emplacement in the upper crust: The Black Mesa pluton, Henry Mountains, Utah , 2006 .

[38]  B. Scaillet,et al.  Phase Equilibria of the Lyngdal Granodiorite (Norway): Implications for the Origin of Metaluminous Ferroan Granitoids , 2006 .

[39]  J. Vigneresse Granitic batholiths: from pervasive and continuous melting in the lower crust to discontinuous and spaced plutonism in the upper crust , 2006, Transactions of the Royal Society of Edinburgh: Earth Sciences.

[40]  C. Ottley,et al.  Methods for the microsampling and high-precision analysis of strontium and rubidium isotopes at single crystal scale for petrological and geochronological applications , 2006 .

[41]  C. S. Hutchison Geology of North-West Borneo: Sarawak, Brunei and Sabah , 2005 .

[42]  J. Adam,et al.  Rutile stability and rutile/melt HFSE partitioning during partial melting of hydrous basalt: Implications for TTG genesis , 2005 .

[43]  A. Glazner,et al.  Voluminous granitic magmas from common basaltic sources , 2005 .

[44]  P. Ulmer,et al.  The Liquid Line of Descent of Anhydrous, Mantle-Derived, Tholeiitic Liquids by Fractional and Equilibrium Crystallization—an Experimental Study at 1·0 GPa , 2004 .

[45]  A. P. Douce,et al.  Vapor-Absent Melting of Tonalite at 15–32 kbar , 2004 .

[46]  N. Thuy,et al.  Geochemical and isotopic constraints on the petrogenesis of granitoids from the Dalat zone, southern Vietnam , 2004 .

[47]  J. Valley 13. Oxygen Isotopes in Zircon , 2003 .

[48]  S. Tanner,et al.  Long-term performance characteristics of a plasma ionisation multi-collector mass spectrometer (PIMMS): The thermofinnigan neptune , 2003 .

[49]  S. Tanner,et al.  A routine method for the dissolution of geological samples for the analysis of REE and trace elements via ICP-MS , 2003 .

[50]  N. Chatterjee,et al.  Fractional crystallization and mantle-melting controls on calc-alkaline differentiation trends , 2003 .

[51]  F. Anselmetti,et al.  Proceedings of the Ocean Drilling Program. Initial Reports , 2002 .

[52]  F. Spera Energy-constrained open-system magmatic processes I : General model and energy-constrained assimilation and fractional crystallization (EC-AFC) formulation , 2001 .

[53]  H. Bellon,et al.  Le magmatisme post-collisionnel du Nord-Ouest de Borneo, produit de la fusion d'un fragment de croute oceanique ancre dans le manteau superieur , 2001 .

[54]  A. Cruden,et al.  Granite magma formation, transport and emplacement in the Earth's crust , 2000, Nature.

[55]  R. Hall,et al.  Neogene sutures in eastern Indonesia , 2000 .

[56]  N. Petford,et al.  Granites are not diapiric! , 2000 .

[57]  C. S. Hutchison,et al.  A Miocene collisional belt in north Borneo: uplift mechanism and isostatic adjustment quantified by thermochronology , 2000, Journal of the Geological Society.

[58]  C. S. Hutchison,et al.  Age and MORB geochemistry of the Sabah ophiolite basement , 2000 .

[59]  V. Gardien,et al.  Melting of Biotite + Plagioclase + Quartz Gneisses: the Role of H2O in the Stability of Amphibole , 2000 .

[60]  M. Kohn,et al.  Effects of cation substitutions in garnet and pyroxene on equilibrium oxygen isotope fractionations , 1998 .

[61]  Cruden Alexander.R. On the emplacement of tabular granites , 1998, Journal of the Geological Society.

[62]  W. Collins,et al.  Depositional features and stratigraphic sections in granitic plutons: implications for the emplacement and crystallization of granitic magma , 1998 .

[63]  D. Mattey,et al.  Oxygen isotope variations in Lau Basin lavas , 1998 .

[64]  S. Mukasa,et al.  Age and geochemistry of an 'anorogenic' crustal melt and implications for I-type granite petrogenesis , 1997 .

[65]  D. Darbyshire,et al.  Nd and Sr isotope geochemistry of plutonic rocks from Hong Kong : implications for granite petrogenesis, regional structure and crustal evolution , 1997 .

[66]  J. Montel,et al.  Partial melting of metagreywackes, Part II. Compositions of minerals and melts , 1997 .

[67]  N. Petford,et al.  Are granitic intrusions scale invariant? , 1997, Journal of the Geological Society.

[68]  R. Carlson,et al.  Major, trace element, and isotopic compositions of Vietnamese basalts: Interaction of hydrous EM1-rich asthenosphere with thinned Eurasian lithosphere , 1996 .

[69]  Jagtar Singh,et al.  Dehydration melting of tonalites. Part I. Beginning of melting , 1996 .

[70]  Jagtar Singh,et al.  Dehydration melting of tonalites. Part II. Composition of melts and solids , 1996 .

[71]  K. Winther An experimentally based model for the origin of tonalitic and trondhjemitic melts , 1996 .

[72]  Bing-quan Zhu The mapping of geochemical provinces in China based on Pb isotopes , 1995 .

[73]  V. Gardien,et al.  Experimental melting of biotite + plagioclase + quartz ± muscovite assemblages and implications for crustal melting , 1995 .

[74]  E. Watson,et al.  Dehydration melting of metabasalt at 8-32 kbar : Implications for continental growth and crust-mantle recycling , 1995 .

[75]  M. Ghiorso,et al.  Assimilation of felsic crust by basaltic magma: Thermal limits and extents of crustal contamination of mantle-derived magmas , 1995 .

[76]  J. Beard,et al.  Dehydration-melting of Biotite Gneiss and Quartz Amphibolite from 3 to 15 kbar , 1995 .

[77]  Mark S. Ghiorso,et al.  Chemical mass transfer in magmatic processes IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures , 1995 .

[78]  D. Lowry,et al.  Oxygen isotope composition of mantle peridotite , 1994 .

[79]  T. Dunn,et al.  Dehydration melting of a basaltic composition amphibolite at 1.5 and 2.0 GPa: implications for the origin of adakites , 1994 .

[80]  F. Tongkul The geology of Northern Sabah, Malaysia: Its relationship to the opening of the South China Sea Basin , 1994 .

[81]  P. Wyllie,et al.  Dehydration-melting of amphibolite at 10 kbar: the effects of temperature and time , 1994 .

[82]  T. Rushmer Experimental high-pressure granulites: Some applications to natural mafic xenolith suites and Archean granulite terranes , 1993 .

[83]  D. Mattey,et al.  High-precision oxygen isotope microanalysis of ferromagnesian minerals by laser-fluorination , 1993 .

[84]  R. Carlson,et al.  Magmatism in the South China Basin: 1. Isotopic and trace-element evidence for an endogenous Dupal mantle component , 1992 .

[85]  J. Clemens,et al.  Granitic magma transport by fracture propagation , 1992 .

[86]  K. P. Skjerlie,et al.  Vapor-absent melting at 10 kbar of a biotite- and amphibole-bearing tonalitic gneiss: Implications for the generation of A-type granites , 1992 .

[87]  M. Thirlwall Long-term reproducibility of multicollector Sr and Nd isotope ratio analysis , 1991 .

[88]  J. Letouzey,et al.  Neogene arc-continent collision in Sabah, Northern Borneo (Malaysia) , 1991 .

[89]  F. Tongkul Tectonic evolution of Sabah, Malaysia , 1991 .

[90]  E. Watson,et al.  Partial melting of amphibolite/eclogite and the origin of Archean trondhjemites and tonalites , 1991 .

[91]  A. E. Patiño Douce,et al.  Phase equilibria and melt productivity in the pelitic system: implications for the origin of peraluminous granitoids and aluminous granulites , 1991 .

[92]  G. Lofgren,et al.  Dehydration Melting and Water-Saturated Melting of Basaltic and Andesitic Greenstones and Amphibolites at 1, 3, and 6. 9 kb , 1991 .

[93]  T. Rushmer Partial melting of two amphibolites: contrasting experimental results under fluid-absent conditions , 1991 .

[94]  M. Drummond,et al.  Derivation of some modern arc magmas by melting of young subducted lithosphere , 1990, Nature.

[95]  M. Flower,et al.  Genesis of the Kinabalu (Sabah) granitoid at a subduction-collision junction , 1989 .

[96]  D. Fornari,et al.  Petrology of Lavas from the Lamont Seamount Chain and Adjacent East Pacific Rise, 10° N , 1989 .

[97]  R. Clayton,et al.  Oxygen isotope fractionation in quartz, albite, anorthite and calcite , 1989 .

[98]  A. Thompson,et al.  Fluid-absent (dehydration) melting of biotite in metapelites in the early stages of crustal anatexis , 1988 .

[99]  R. Wiebe Structural and Magmatic Evolution of a Magma Chamber: The Newark Island Layered Intrusion, Nain, Labrador , 1988 .

[100]  J. Holloway,et al.  Experimental determination of the fluid-absent melting relations in the pelitic system , 1988 .

[101]  S. Bergman,et al.  Rock and mineral chemistry of the Linhaisai Minette, central Kalimantan, Indonesia, and the origin of Borneo diamonds , 1988 .

[102]  T. Grove,et al.  The evolution of young silicic lavas at Medicine Lake Volcano, California: Implications for the origin of compositional gaps in calc-alkaline series lavas , 1986 .

[103]  H. Crecraft,et al.  Partition coefficients for trace elements in silicic magmas , 1985 .

[104]  John R. Farver,et al.  Oxygen diffusion in amphiboles , 1985 .

[105]  S. Hart A large-scale isotope anomaly in the Southern Hemisphere mantle , 1984, Nature.

[106]  M. T. Naney Phase equilibria of rock-forming ferromagnesian silicates in granitic systems , 1983 .

[107]  D. DePaolo Trace element and isotopic effects of combined wallrock assimilation and fractional crystallization , 1981 .

[108]  D. James,et al.  Oxygen isotopes and the origin of high-87Sr/86Sr andesites , 1978 .

[109]  B. Leake,et al.  Report. Nomenclature of Amphiboles: Report of the Subcommittee on Amphiboles of the International Mineralogical Association Commission on New Minerals and Mineral Names , 1971, Mineralogical Magazine.

[110]  M. J. Bas The role of aluminum in igneous clinopyroxenes with relation to their parentage , 1962 .

[111]  R. Rudnick,et al.  Composition of the Continental Crust , 2014 .

[112]  K. Zaw,et al.  Tectonic evolution of SE Asia , 2008 .

[113]  Xuefa Shi,et al.  Major element, trace element, and Sr, Nd and Pb isotope studies of Cenozoic basalts from the South China Sea , 2008 .

[114]  S. Tanner,et al.  Plasma source mass spectrometry : applications and emerging technologies , 2003 .

[115]  R. Rudnick,et al.  3.01 – Composition of the Continental Crust , 2003 .

[116]  D. Cole,et al.  Equilibrium Oxygen, Hydrogen and Carbon Isotope Fractionation Factors Applicable to Geologic Systems , 2001 .

[117]  J. Vigneresse,et al.  Granitic magma ascent and emplacement: neither diapirism nor neutral buoyancy , 2000, Geological Society, London, Special Publications.

[118]  C. S. Hutchison The ‘Rajang accretionary prism’ and ‘Lupar Line’ problem of Borneo , 1996, Geological Society, London, Special Publications.

[119]  T. Hirata Lead isotopic analyses of NIST Standard Reference Materials using multiple collector inductively coupled plasma mass spectrometry coupled with a modified external correction method for mass discrimination effect , 1996 .

[120]  B. Chappell,et al.  I- and S-type granites in the Lachlan Fold Belt , 1992, Earth and Environmental Science Transactions of the Royal Society of Edinburgh.

[121]  R. C. Newton,et al.  Experimental melting of hydrous low-K tholeiite: evidence onthe origin of Archaean cratons , 1991 .

[122]  W. McDonough,et al.  Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes , 1989, Geological Society, London, Special Publications.

[123]  R. W. Le Maitre,et al.  A Classification of igneous rocks and glossary of terms : recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks , 1989 .

[124]  D. Hayes The Tectonic and Geologic Evolution of Southeast Asian Seas and Island Part 2 , 1980 .

[125]  R. Pankhurst,et al.  The interpretation of igneous rocks , 1979 .

[126]  E. Nisbet,et al.  Clinopyroxene composition in mafic lavas from different tectonic settings , 1977 .

[127]  G. Faure Principles of isotope geology , 1977 .

[128]  H. J. Kirk The igneous rocks of Sarawak and Sabah , 1968 .

[129]  R. Howie,et al.  An Introduction to the Rock-Forming Minerals , 1966 .

[130]  E. Wenk,et al.  Geology of the colony of North Borneo , 1951 .