Parameter identification for solar cell models using harmony search-based algorithms

Recently, accurate modeling of current vs. voltage (I–V) characteristics of solar cells has attracted the main focus of various researches. The main drawback in accurate modeling is the lack of information about the precise values of the models parameters, namely, photo-generated current, diode saturation current, series resistance, shunt resistance and diode ideality factor. In order to make a good agreement between experimental data and the models results, parameter identification with the help of an optimization technique is necessary. Because I–V curve of solar cells is extremely non-linear, an excellent optimization technique is required. In this paper, harmony search (HS)-based parameter identification methods are proposed to identify the unknown parameters of the solar cell single and double diode models. Simple concept, easy implementation and high performance are the main reasons of HS popularity to solve complex optimization problems. For this aim, three state-of-the-art HS variants are used to determine the unknown parameters of the models. The effectiveness of the HS variants is investigated with comparative study among different techniques. Simulation results manifest the superiority of the HS-based algorithms over the other studied algorithms in modeling solar cell systems.

[1]  Takehito Mitate,et al.  Modeling of an equivalent circuit for dye-sensitized solar cells , 2004 .

[2]  M. Wolf,et al.  Investigation of the double exponential in the current—Voltage characteristics of silicon solar cells , 1977, IEEE Transactions on Electron Devices.

[3]  J. Phillips,et al.  A comparative study of extraction methods for solar cell model parameters , 1986 .

[4]  Huang Wei,et al.  Extracting solar cell model parameters based on chaos particle swarm algorithm , 2011, 2011 International Conference on Electric Information and Control Engineering.

[5]  T. Easwarakhanthan,et al.  Nonlinear Minimization Algorithm for Determining the Solar Cell Parameters with Microcomputers , 1986 .

[6]  M. Fesanghary,et al.  An improved harmony search algorithm for solving optimization problems , 2007, Appl. Math. Comput..

[7]  S. Karmalkar,et al.  An Analytical Method to Extract the Physical Parameters of a Solar Cell From Four Points on the Illuminated $J{-}V$ Curve , 2009, IEEE Electron Device Letters.

[8]  M. F. AlHajri,et al.  A new estimation approach for determining the I–V characteristics of solar cells , 2011 .

[9]  Weidong Xiao,et al.  Real-Time Identification of Optimal Operating Points in Photovoltaic Power Systems , 2006, IEEE Transactions on Industrial Electronics.

[10]  M. F. AlHajri,et al.  Optimal extraction of solar cell parameters using pattern search , 2012 .

[11]  H. Beyer,et al.  Mapping the performance of PV modules, effects of module type and data averaging , 2010 .

[12]  L. Li,et al.  IMPROVED HARMONY SEARCH METHODS TO REPLACE VARIATIONAL PRINCIPLE IN GEOTECHNICAL PROBLEMS , 2011 .

[13]  Alireza Rezazadeh,et al.  A grouping-based global harmony search algorithm for modeling of proton exchange membrane fuel cell , 2011 .

[14]  Kwee-Bo Sim,et al.  Parameter-setting-free harmony search algorithm , 2010, Appl. Math. Comput..

[15]  Zong Woo Geem,et al.  A New Heuristic Optimization Algorithm: Harmony Search , 2001, Simul..

[16]  Alireza Rezazadeh,et al.  An Innovative Global Harmony Search Algorithm for Parameter Identification of a PEM Fuel Cell Model , 2012, IEEE Transactions on Industrial Electronics.

[17]  A. Kapoor,et al.  Exact analytical solutions of the parameters of real solar cells using Lambert W-function , 2004 .

[18]  Marcelo Gradella Villalva,et al.  Comprehensive Approach to Modeling and Simulation of Photovoltaic Arrays , 2009, IEEE Transactions on Power Electronics.

[19]  E. V. Dyk,et al.  Parameter extraction from I–V characteristics of PV devices , 2011 .

[20]  Steven Mills,et al.  Harmony filter: A robust visual tracking system using the improved harmony search algorithm , 2010, Image Vis. Comput..

[21]  Chaohua Dai,et al.  Seeker Optimization Algorithm for Digital IIR Filter Design , 2010, IEEE Transactions on Industrial Electronics.

[22]  Mehmet Polat Saka,et al.  Optimum design of cellular beams using harmony search and particle swarm optimizers , 2011 .

[23]  A. K. Al-Othman,et al.  Simulated Annealing algorithm for photovoltaic parameters identification , 2012 .