Estimations of the parameter of a Dirichlet distribution using residual allocation model representations and sampling properties
暂无分享,去创建一个
[1] Ramon J. Aldag,et al. LINEAR VS. NON–LINEAR MODELS OF THE FORMATION OF AFFECTIVE REACTIONS: THE CASE OF JOB ENLARGEMENT , 1976 .
[2] H. Charles Romesburg. ESTIMATION OF PARAMETERS IN THE BETA DISTRIBUTION: COMMENT , 1976 .
[3] J. Bernardo,et al. Psi (Digamma) Function , 1976 .
[4] B. E. Schneider. Algorithm AS 121: Trigamma Function , 1978 .
[5] G. Weiss,et al. Small sample comparison of estimation methods for the beta distribution , 1980 .
[6] Critical values of the sample product-moment correlation coefficient in the bivariate normal distribution , 1982 .
[7] G. Ronning. Maximum likelihood estimation of dirichlet distributions , 1989 .
[8] A. Narayanan. Maximum Likelihood Estimation of the Parameters of the Dirichlet Distribution , 1991 .
[9] A. Narayanan,et al. Small sample properties of parameter estimation in the Dirichlet distribution , 1991 .
[10] S. Tavaré,et al. Ancestral Inference in Population Genetics , 1994 .
[11] J. Spouge. Computation of the gamma, digamma, and trigamma functions , 1994 .
[12] J. Pitman,et al. Random Discrete Distributions Derived from Self-Similar Random Sets , 1996 .
[13] Lancelot F. James,et al. Gibbs Sampling Methods for Stick-Breaking Priors , 2001 .
[14] N. L. Johnson,et al. Continuous Multivariate Distributions: Models and Applications , 2005 .
[15] T. Huillet. Sampling Formulae Arising from Random Dirichlet Populations , 2005 .
[16] T. Huillet,et al. SIZE-BIASED PERMUTATION OF DIRICHLET PARTITIONS AND SEARCH-COST DISTRIBUTION , 2005, Probability in the Engineering and Informational Sciences.