Estimations of the parameter of a Dirichlet distribution using residual allocation model representations and sampling properties

[1]  Ramon J. Aldag,et al.  LINEAR VS. NON–LINEAR MODELS OF THE FORMATION OF AFFECTIVE REACTIONS: THE CASE OF JOB ENLARGEMENT , 1976 .

[2]  H. Charles Romesburg ESTIMATION OF PARAMETERS IN THE BETA DISTRIBUTION: COMMENT , 1976 .

[3]  J. Bernardo,et al.  Psi (Digamma) Function , 1976 .

[4]  B. E. Schneider Algorithm AS 121: Trigamma Function , 1978 .

[5]  G. Weiss,et al.  Small sample comparison of estimation methods for the beta distribution , 1980 .

[6]  Critical values of the sample product-moment correlation coefficient in the bivariate normal distribution , 1982 .

[7]  G. Ronning Maximum likelihood estimation of dirichlet distributions , 1989 .

[8]  A. Narayanan Maximum Likelihood Estimation of the Parameters of the Dirichlet Distribution , 1991 .

[9]  A. Narayanan,et al.  Small sample properties of parameter estimation in the Dirichlet distribution , 1991 .

[10]  S. Tavaré,et al.  Ancestral Inference in Population Genetics , 1994 .

[11]  J. Spouge Computation of the gamma, digamma, and trigamma functions , 1994 .

[12]  J. Pitman,et al.  Random Discrete Distributions Derived from Self-Similar Random Sets , 1996 .

[13]  Lancelot F. James,et al.  Gibbs Sampling Methods for Stick-Breaking Priors , 2001 .

[14]  N. L. Johnson,et al.  Continuous Multivariate Distributions: Models and Applications , 2005 .

[15]  T. Huillet Sampling Formulae Arising from Random Dirichlet Populations , 2005 .

[16]  T. Huillet,et al.  SIZE-BIASED PERMUTATION OF DIRICHLET PARTITIONS AND SEARCH-COST DISTRIBUTION , 2005, Probability in the Engineering and Informational Sciences.