Approximation of Hamilton-Jacobi equations with Caputo time-fractional derivative

In this paper, we investigate the numerical approximation of Hamilton-Jacobi equations with the Caputo time-fractional derivative. We introduce an explicit in time discretization of the Caputo derivative and a finite difference scheme for the approximation of the Hamiltonian. We show that the approximation scheme so obtained is stable under an appropriate condition on the discretization parameters and converges to the unique viscosity solution of the Hamilton-Jacobi equation.

[1]  G. Barles,et al.  Convergence of approximation schemes for fully nonlinear second order equations , 1991 .

[2]  Bangti Jin,et al.  An analysis of the L1 Scheme for the subdiffusion equation with nonsmooth data , 2015, 1501.00253.

[3]  I. Podlubny Fractional differential equations , 1998 .

[4]  Tokinaga Namba,et al.  On existence and uniqueness of viscosity solutions for second order fully nonlinear PDEs with Caputo time fractional derivatives , 2017, Nonlinear Differential Equations and Applications NoDEA.

[5]  Yoshikazu Giga,et al.  On a discrete scheme for time fractional fully nonlinear evolution equations , 2020, Asymptotic Analysis.

[6]  H. Ishii,et al.  Approximate solutions of the bellman equation of deterministic control theory , 1984 .

[7]  Tokinaga Namba On Existence and Uniqueness of Second Order Fully Nonlinear PDEs with Caputo time fractional derivatives , 2017 .

[8]  M. Meerschaert,et al.  Stochastic Models for Fractional Calculus , 2011 .

[9]  P. Lions,et al.  Two approximations of solutions of Hamilton-Jacobi equations , 1984 .

[10]  Y. Giga,et al.  Well-posedness of Hamilton–Jacobi equations with Caputo’s time fractional derivative , 2016, 1612.05408.

[11]  Erwin Topp,et al.  Existence and uniqueness for parabolic problems with Caputo time derivative , 2017 .

[12]  Andrei I. Subbotin,et al.  Generalized solutions of first-order PDEs - the dynamical optimization perspective , 1994, Systems and control.

[13]  Alexis Vasseur,et al.  A Parabolic Problem with a Fractional Time Derivative , 2015, 1501.07211.

[14]  K. Diethelm,et al.  Fractional Calculus: Models and Numerical Methods , 2012 .

[15]  Chuanju Xu,et al.  Finite difference/spectral approximations for the time-fractional diffusion equation , 2007, J. Comput. Phys..

[16]  Adam M. Oberman,et al.  Convergent Difference Schemes for Degenerate Elliptic and Parabolic Equations: Hamilton-Jacobi Equations and Free Boundary Problems , 2006, SIAM J. Numer. Anal..

[17]  M. T. Cicero FRACTIONAL CALCULUS AND WAVES IN LINEAR VISCOELASTICITY , 2012 .

[18]  Jian-Guo Liu,et al.  Explicit and Implicit TVD Schemes for Conservation Laws with Caputo Derivatives , 2016, Journal of Scientific Computing.

[19]  V. E. Tarasov Review of Some Promising Fractional Physical Models , 2013, 1502.07681.

[20]  James A. Sethian,et al.  Level Set Methods and Fast Marching Methods , 1999 .

[21]  M. Bardi,et al.  Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations , 1997 .

[22]  Yoshikazu Giga,et al.  A new numerical scheme for constrained total variation flows and its convergence , 2019, 1904.06105.

[23]  M. Falcone,et al.  Semi-Lagrangian Approximation Schemes for Linear and Hamilton-Jacobi Equations , 2014 .

[24]  James A. Sethian,et al.  Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid , 2012 .

[25]  N E Manos,et al.  Stochastic Models , 1960, Encyclopedia of Social Network Analysis and Mining. 2nd Ed..