Exact orbital motion theory of the shielding potential around an emitting, spherical body

A kinetic theory for the equilibrium of an unmagnetized plasma consisting of electrons and ions surrounding a spherical body emitting electrons (due to thermionic emission, photoemission, or secondary emission) is presented. The theory is valid for positively charged bodies, neglects collisions of the plasma particles, and is formulated for profiles of the shielding potential presenting an attractive well. Particle-in-cell simulations are shown to be in good agreement with the theory. An approximated criterion is derived to determine the presence of the potential well.

[1]  V. Fortov,et al.  Emission properties and structural ordering of strongly coupled dust particles in a thermal plasma , 1996 .

[2]  D. Mendis,et al.  UV-induced Coulomb crystallization in a dusty gas , 1995 .

[3]  Goree Ion trapping by a charged dust grain in a plasma. , 1992, Physical review letters.

[4]  Dezhen Wang,et al.  Effects of dust charging associated with an electron beam in the cathode sheath of glow discharges , 2000 .

[5]  A. Einstein Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt [AdP 17, 132 (1905)] , 2005, Annalen der Physik.

[6]  M Rosenberg,et al.  Attractive potential around a thermionically emitting microparticle. , 2004, Physical review letters.

[7]  D. Mendis,et al.  Role of grain size and particle velocity distribution in secondary electron emission in space plasmas , 1993 .

[8]  B. James,et al.  Positively charged particles in dusty plasmas. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[9]  Mihaly Horanyi,et al.  CHARGED DUST DYNAMICS IN THE SOLAR SYSTEM , 1996 .

[10]  J. Allen,et al.  The floating potential of spherical probes and dust grains. Part 1. Radial motion theory , 2002, Journal of Plasma Physics.

[11]  C. Birdsall,et al.  Plasma Physics via Computer Simulation , 2018 .

[12]  G. Lapenta Simulation of charging and shielding of dust particles in drifting plasmas , 1999 .

[13]  Abdullah Al Mamun,et al.  Introduction to Dusty Plasma Physics , 2001 .

[14]  J. Allen,et al.  On the orbital motion limited theory for a small body at floating potential in a Maxwellian plasma , 2000 .

[15]  F. Verheest,et al.  Jeans Instability in Collisional Dusty Plasmas , 1998 .

[16]  I. Bernstein,et al.  Theory of Electrostatic Probes in a Low‐Density Plasma , 1959 .

[17]  J. Allen,et al.  The floating potential of spherical probes and dust grains. II: Orbital motion theory , 2003, Journal of Plasma Physics.

[18]  A. Chernyshev,et al.  Highly nonideal classical thermal plasmas: Experimental study of ordered macroparticle structures , 1997 .

[19]  D. A. Mendis,et al.  Secondary emission from small dust grains at high electron energies , 1994 .

[20]  E. Whipple,et al.  Potentials of surfaces in space , 1981 .

[21]  M. Lampe Limits of validity for orbital-motion-limited theory for a small floating collector , 2001, Journal of Plasma Physics.

[22]  G. Morfill,et al.  Potential of a dielectric particle in a flow of a collisionless plasma , 1999 .

[23]  C. Birdsall,et al.  A fully kinetic, self‐consistent particle simulation model of the collisionless plasma–sheath region , 1990 .

[24]  M. Sodha Thermal and photoelectric ionization of solid particles , 1963 .

[25]  I. Langmuir,et al.  THE THEORY OF COLLECTORS IN GASEOUS DISCHARGES , 1926 .

[26]  J. Goree Charging of particles in a plasma , 1994 .

[27]  D. Sheehan,et al.  UV-induced Coulomb crystallization of dust grains in high-pressure gas , 1996 .

[28]  Thornton Page,et al.  Space Physics With Artificial Satellites , 1966 .

[29]  Giovanni Lapenta Nature of the force field in plasma wakes. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[30]  G. Sorasio,et al.  The role of thermionic emission in meteor physics , 2001 .

[31]  Lapenta Dipole moments on dust particles immersed in anisotropic plasmas. , 1995, Physical review letters.

[32]  R. Logan,et al.  Laser cathode ray tube operation at room temperature , 1984 .

[33]  Hajo Bruining,et al.  Physics and applications of secondary electron emission , 1954 .

[34]  C. Goertz,et al.  Dusty plasmas in the solar system , 1989 .

[35]  James F. Allen,et al.  The Collection of Positive Ions by a Probe Immersed in a Plasma , 1957 .

[36]  L. A. Schwager Effects of low reflection on the collector and source sheaths of a finite ion temperature plasma , 1988 .

[37]  David B. Graves,et al.  Sheath structure around particles in low-pressure discharges , 1992 .

[38]  Pandey,et al.  Jeans instability of a dusty plasma. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[39]  D. Baker,et al.  Two substorm intensifications compared: Onset, expansion, and global consequences , 1998 .

[40]  T. Zurbuchen,et al.  Solar cycle–dependent helicity transport by magnetic clouds , 2005 .