Tip clearance effects in a turbine rotor : Part I : Pressure field and loss

This paper presents an experimental investigation of the effects of the tip clearance flow in an axial turbine rotor. The effects investigated include the distribution and the development of the pressure, the loss, the velocity, and the turbulence fields. Theseflow fields were measured using the techniques of static pressure taps, rapid response pressure probes, rotating five-hole probes, and Laser Doppler Velocimeter. Part I of this paper covers the loss development through the passage, and the pressure distribution within the passage, on the blade surfaces, on the blade tip, and on the casing wall. Regions with both the lowest pressure and the highest loss indicate the inception and the trace of the tip leakage vortex. The suction effect of the vortex slightly increases the blade loading near the tip clearance region. The relative motion between the turbine blades and the casing wall results in a complicated pressure field in the tip region. The fluid near the casing wall experiences a considerable pressure difference across the tip. The highest total pressure drop and the highest total pressure loss were both observed in the region of the tip leakage vortex, where the loss is nearly twice as high as that near the passage vortex region. However, the passage vortex produces more losses than the tip leakage vortex in total. The development of the loss in turbine rotor is similar to that observed in cascades. Part II of this paper covers the velocity and the turbulence fields.