EXACT SIMULATION OF THE WRIGHT – FISHER DIFFUSION

The Wright-Fisher family of diffusion processes is a widely used class of evolutionary models. However, simulation is difficult because there is no known closed-form formula for its transition function. In this article we demonstrate that it is in fact possible to simulate exactly from a broad class of Wright-Fisher diffusion processes and their bridges. For those diffusions corresponding to reversible, neutral evolution, our key idea is to exploit an eigenfunction expansion of the transition function; this approach even applies to its infinite-dimensional analogue, the Fleming-Viot process. We then develop an exact rejection algorithm for processes with more general drift functions, including those modelling natural selection, using ideas from retrospective simulation. Our approach also yields methods for exact simulation of the moment dual of the Wright-Fisher diffusion, the ancestral process of an infinite-leaf Kingman coalescent tree. We believe our new perspective on diffusion simulation holds promise for other models admitting a transition eigenfunction expansion.

[1]  Robert C. Griffiths,et al.  A transition density expansion for a multi-allele diffusion model , 1979, Advances in Applied Probability.

[2]  R. Griffiths,et al.  Lines of descent in the diffusion approximation of neutral Wright-Fisher models. , 1980, Theoretical population biology.

[3]  S. Karlin,et al.  A second course in stochastic processes , 1981 .

[4]  J. Pitman,et al.  Bessel processes and infinitely divisible laws , 1981 .

[5]  R. Griffiths,et al.  Simulating allele frequencies in a population and the genetic differentiation of populations under mutation pressure. , 1983, Theoretical population biology.

[6]  S. Tavaré,et al.  Line-of-descent and genealogical processes, and their applications in population genetics models. , 1984, Theoretical population biology.

[7]  Robert C. Griffiths,et al.  Asymptotic line-of-descent distributions , 1984 .

[8]  B. Øksendal Stochastic Differential Equations , 1985 .

[9]  L. Devroye Non-Uniform Random Variate Generation , 1986 .

[10]  Robert C. Griffiths,et al.  The Transition Function of a Fleming-Viot Process , 1993 .

[11]  Stewart N. Ethier,et al.  Fleming-Viot processes in population genetics , 1993 .

[12]  Jim Pitman,et al.  Markovian Bridges: Construction, Palm Interpretation, and Splicing , 1993 .

[13]  Henri Schurz,et al.  Numerical Regularization for SDEs: Construction of Nonnegative Solutions , 1995 .

[14]  A. Barbour,et al.  A TRANSITION FUNCTION EXPANSION FOR A DIFFUSION MODEL WITH SELECTION , 2000 .

[15]  Freddy Delbaen,et al.  An Interest Rate Model with Upper and Lower Bounds , 2002 .

[16]  Graham Coop,et al.  Ancestral inference on gene trees under selection. , 2004, Theoretical population biology.

[17]  G. Roberts,et al.  Exact simulation of diffusions , 2005, math/0602523.

[18]  Ryan D. Hernandez,et al.  Simultaneous inference of selection and population growth from patterns of variation in the human genome , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[19]  V. Linetsky On the transition densities for reflected diffusions , 2005, Advances in Applied Probability.

[20]  G. Roberts,et al.  Retrospective exact simulation of diffusion sample paths with applications , 2006 .

[21]  Darren J. Wilkinson,et al.  Bayesian sequential inference for nonlinear multivariate diffusions , 2006, Stat. Comput..

[22]  P. Fearnhead,et al.  Exact and computationally efficient likelihood‐based estimation for discretely observed diffusion processes (with discussion) , 2006 .

[23]  C. Gouriéroux,et al.  Multivariate Jacobi process with application to smooth transitions , 2006 .

[24]  S. Chib Likelihood based inference for diffusion driven state space models , 2006 .

[25]  Robert C. Griffiths,et al.  Coalescent lineage distributions , 2006, Advances in Applied Probability.

[26]  Spyridon J. Hatjispyros,et al.  A Fleming-Viot Process and Bayesian Nonparametrics , 2006, math/0702885.

[27]  Stephen G. Walker,et al.  Sampling the Dirichlet Mixture Model with Slices , 2006, Commun. Stat. Simul. Comput..

[28]  G. Roberts,et al.  Retrospective Markov chain Monte Carlo methods for Dirichlet process hierarchical models , 2007, 0710.4228.

[29]  P. Fearnhead,et al.  Particle filters for partially observed diffusions , 2007, 0710.4245.

[30]  V. Genon-Catalot,et al.  FILTERING THE WRIGHT-FISHER DIFFUSION , 2007, 0707.0537.

[31]  Jonathan P. Bollback,et al.  Estimation of 2Nes From Temporal Allele Frequency Data , 2008, Genetics.

[32]  Darren J. Wilkinson,et al.  Bayesian inference for nonlinear multivariate diffusion models observed with error , 2008, Comput. Stat. Data Anal..

[33]  Alexandros Beskos,et al.  A Factorisation of Diffusion Measure and Finite Sample Path Constructions , 2008 .

[34]  R. Griffiths,et al.  Diffusion processes and coalescent trees , 2010, 1003.4650.

[35]  S. Walker,et al.  On a Gibbs sampler based random process in Bayesian nonparametrics , 2009 .

[36]  Ryan D. Hernandez,et al.  Inferring the Joint Demographic History of Multiple Populations from Multidimensional SNP Frequency Data , 2009, PLoS genetics.

[37]  K. Burrage,et al.  Stochastic models and simulation of ion channel dynamics , 2010, ICCS.

[38]  Mogens Bladt,et al.  Corrigendum to “Simple simulation of diffusion bridges with application to likelihood inference for diffusions” , 2010, Bernoulli.

[39]  P. Fearnhead,et al.  Random‐weight particle filtering of continuous time processes , 2010 .

[40]  Paul Fearnhead,et al.  Markov Chain Monte Carlo for Exact Inference for Diffusions , 2011, 1102.5541.

[41]  Kevin C. Chen,et al.  Non-equilibrium allele frequency spectra via spectral methods. , 2010, Theoretical population biology.

[42]  Orestis Malaspinas,et al.  Estimating Allele Age and Selection Coefficient from Time-Serial Data , 2012, Genetics.

[43]  Yun S. Song,et al.  A Simple Method for Finding Explicit Analytic Transition Densities of Diffusion Processes with General Diploid Selection , 2012, Genetics.

[44]  K. Burrage,et al.  A boundary preserving numerical algorithm for the Wright-Fisher model with mutation , 2012 .

[45]  A. Mijatović,et al.  On the Loss of the Semimartingale Property at the Hitting Time of a Level , 2013, 1304.1377.

[46]  Yun S. Song,et al.  An explicit transition density expansion for a multi-allelic Wright-Fisher diffusion with general diploid selection. , 2012, Theoretical population biology.

[47]  M. Lascoux,et al.  The Characteristic Trajectory of a Fixing Allele: A Consequence of Fictitious Selection That Arises from Conditioning , 2013, Genetics.

[48]  Orthogonal polynomial kernels and canonical correlations for Dirichlet measures , 2010, 1003.5131.

[49]  Paul A. Jenkins,et al.  Exact simulation of the sample paths of a diffusion with a finite entrance boundary , 2013, 1311.5777.

[50]  R. Griffiths,et al.  Analysis and rejection sampling of Wright-Fisher diffusion bridges. , 2013, Theoretical population biology.

[51]  O. Papaspiliopoulos,et al.  Filtering hidden Markov measures , 2014, 1411.4944.

[52]  Mogens Bladt,et al.  Simulation of multivariate diffusion bridges , 2014 .

[53]  N. Rosenberg,et al.  Theory and applications of a deterministic approximation to the coalescent model. , 2014, Theoretical Population Biology.

[54]  M. Bladt,et al.  Simulation of multivariate diffusion bridges , 2014, 1405.7728.

[55]  Matteo Ruggiero,et al.  Dynamic density estimation with diffusive Dirichlet mixtures , 2014, 1410.2477.

[56]  Andreas Neuenkirch,et al.  First order strong approximations of scalar SDEs defined in a domain , 2014, Numerische Mathematik.

[57]  Omiros Papaspiliopoulos,et al.  Optimal filtering and the dual process , 2013, 1305.4571.

[58]  T. Faniran Numerical Solution of Stochastic Differential Equations , 2015 .

[59]  Gareth O. Roberts,et al.  On the exact and ε-strong simulation of (jump) diffusions , 2013, 1302.6964.