Lie algebroids are curved Lie algebras
暂无分享,去创建一个
[1] H. Busemann. Advances in mathematics , 1961 .
[2] Hsuan-Yi Liao,et al. Formal exponential map for graded manifolds , 2015, 1508.02780.
[3] V. Hinich. Dwyer-Kan localization revisited , 2013, 1311.4128.
[4] Vladimir Hinich. Homological algebra of homotopy algebras , 1997 .
[5] M. Kontsevich. Deformation Quantization of Poisson Manifolds , 1997, q-alg/9709040.
[6] B. Toën,et al. Shifted Poisson structures and deformation quantization , 2015, 1506.03699.
[7] K. Costello. A geometric construction of the Witten genus, I , 2010, 1112.0816.
[8] B. Vallette. Homotopy theory of homotopy algebras , 2014, 1411.5533.
[9] J. Maunder. Koszul duality and homotopy theory of curved Lie algebras , 2015, 1512.01975.
[10] P. Safronov,et al. Shifted Symplectic Lie Algebroids , 2016, International Mathematics Research Notices.
[11] A. Căldăraru,et al. Curved A ∞ algebras and Landau – Ginzburg models , 2010 .
[12] Y. Oh,et al. Lagrangian Intersection Floer Theory: Anomaly and Obstruction, Part I , 2010 .
[13] D. Gaitsgory,et al. A study in derived algebraic geometry Volume II: Deformations, Lie theory and formal geometry , 2018 .
[14] D. Calaque,et al. Formal moduli problems and formal derived stacks , 2018, 1802.09556.
[15] A. Lazarev,et al. Cocommutative coalgebras: homotopy theory and Koszul duality , 2014, 1403.0774.
[16] B. M. Fulk. MATH , 1992 .
[17] D. Calaque,et al. On the Lie algebroid of a derived self-intersection , 2013, 1306.5260.
[18] K. Hess. Rational homotopy theory , 2011 .
[19] S. Halperin. Universal enveloping algebras and loop space homology , 1992 .
[20] B. Fresse. Modules over Operads and Functors , 2007, 0704.3090.
[21] K. Mackenzie. Lie groupoids and Lie algebroids in Differential Geometry: REFERENCES , 1987 .
[22] G. Rinehart. DIFFERENTIAL FORMS ON GENERAL COMMUTATIVE ALGEBRAS , 1963 .
[23] V. Dotsenko,et al. The twisting procedure , 2018, 1810.02941.
[24] T. Nikolaus. Rational and p-adic homotopy theory , 2016 .
[25] L. V. Ovsiannikov. The Lie Theory , 1982 .
[26] Joris,et al. Commentarii Mathematici Helvetici , 2008 .
[27] L. Positselski. Two kinds of derived categories, Koszul duality, and comodule-contramodule correspondence , 2009, 0905.2621.
[28] Shilin Yu. Dolbeault dga and L∞-algebroid of the formal neighborhood , 2017 .
[29] D. joyce. Algebraic Geometry over 𝐶^{∞}-rings , 2019, Memoirs of the American Mathematical Society.
[30] E. Getzler. Maurer-Cartan elements and homotopical perturbation theory , 2018, 1802.06736.
[31] B. Hodson,et al. The effect of passage in vitro and in vivo on the properties of murine fibrosarcomas. II. Sensitivity to cell-mediated cytotoxicity in vitro. , 1985, British Journal of Cancer.
[32] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[33] R. Tennant. Algebra , 1941, Nature.
[34] Saulo Alves de Araujo,et al. Identification of novel keloid biomarkers through Profiling of Tissue Biopsies versus Cell Cultures in Keloid Margin specimens Compared to adjacent Normal Skin , 2010, Eplasty.
[35] J. Pridham. Unifying derived deformation theories , 2007, 0705.0344.
[36] Adv , 2019, International Journal of Pediatrics and Adolescent Medicine.
[37] Eduardo A. Fierro. Structures , 2003, Composite Architecture.
[38] J. Maunder. Unbased rational homotopy theory:a Lie algebra approach , 2015, 1511.07669.
[39] Joost Nuiten,et al. Homotopical Algebra for Lie Algebroids , 2017, Applied Categorical Structures.
[40] G. Vezzosi. A model structure on relative dg-Lie algebroids , 2013, 1304.6049.
[41] J. Nuiten. Koszul duality for Lie algebroids , 2017, Advances in Mathematics.
[42] G. Felder,et al. Relative formality theorem and quantisation of coisotropic submanifolds , 2005, math/0501540.
[43] M. Bergh,et al. Hochschild (Co)homology for Lie Algebroids , 2009, 0908.2630.
[44] K. Fukaya. Deformation theory, homological algebra and mirror symmetry , 2001 .
[45] Ieke Moerdijk,et al. Axiomatic homotopy theory for operads , 2002, math/0206094.
[46] Joseph Hirsh,et al. Curved Koszul duality theory , 2010, 1008.5368.
[47] Christopher L. Rogers,et al. A version of the Goldman–Millson theorem for filtered L∞-algebras , 2015 .
[48] S. Ana,et al. Topology , 2018, International Journal of Mathematics Trends and Technology.
[49] J. Stasheff,et al. Deformation theory and rational homotopy type , 2012, 1211.1647.
[50] P. Steerenberg,et al. Targeting pathophysiological rhythms: prednisone chronotherapy shows sustained efficacy in rheumatoid arthritis. , 2010, Annals of the rheumatic diseases.
[51] Christopher L. Rogers. Complete filtered L∞-algebras and their homotopy theory , 2020 .
[52] Y. Oh,et al. Lagrangian intersection floer theory : anomaly and obstruction , 2009 .
[53] Sarah Whitehouse,et al. Model category structures and spectral sequences , 2018, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.