Adaptive estimation in the linear random coefficients model when regressors have limited variation

We consider a linear model where the coefficients-intercept and slopes-are random and independent from regressors which support is a proper subset. When the density has finite weighted L 2 norm, for well chosen weights, the joint density of the random coefficients is identified. Lower bounds on the supremum risk for the estimation of the density are derived for this model and a related white noise model. We present an estimator, its rates of convergence, and a data-driven rule which delivers adaptive estimators. An R package RandomCoefficients that implements our estimator is available on CRAN.R.

[1]  Ronald F. Boisvert,et al.  NIST Handbook of Mathematical Functions , 2010 .

[2]  T. Kurtz,et al.  Stochastic equations in infinite dimensions , 2006 .

[3]  F. Nazarov Complete Version of Turan’s Lemma for Trigonometric Polynomials on the Unit Circumference , 2000 .

[4]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[5]  Jurgen Frikel,et al.  Sparse regularization in limited angle tomography , 2011, 1109.0385.

[6]  M. Wand,et al.  Multivariate plug-in bandwidth selection , 1994 .

[7]  M. Reed Methods of Modern Mathematical Physics. I: Functional Analysis , 1972 .

[8]  A. Goldenshluger,et al.  On adaptive minimax density estimation on $$R^d$$Rd , 2012, 1210.1715.

[9]  M. Bóna A Walk Through Combinatorics: An Introduction to Enumeration and Graph Theory , 2006 .

[10]  F. Comte,et al.  Regression function estimation as a partly inverse problem , 2020, Annals of the Institute of Statistical Mathematics.

[11]  A. Tsybakov On the best rate of adaptive estimation in some inverse problems , 2000 .

[12]  Mario Bertero,et al.  Introduction to Inverse Problems in Imaging , 1998 .

[13]  Non-Asymptotic behaviour of the spectrum of the Sinc Kernel Operator and Related Applications , 2018, 1804.01257.

[14]  Pascal Massart,et al.  Minimal penalty for Goldenshluger-Lepski method , 2015, 1503.00946.

[15]  Alexandre B. Tsybakov,et al.  Introduction to Nonparametric Estimation , 2008, Springer series in statistics.

[16]  Thomas Merkle Deconvolving compactly supported densities , 2022 .

[17]  P. Maréchal,et al.  A variational approach to the inversion of truncated Fourier operators , 2009 .

[18]  Bernard A. Mair,et al.  Statistical Inverse Estimation in Hilbert Scales , 1996, SIAM J. Appl. Math..

[19]  Nicolai Bissantz,et al.  Convergence Rates of General Regularization Methods for Statistical Inverse Problems and Applications , 2007, SIAM J. Numer. Anal..

[20]  W. Gautschi Some Elementary Inequalities Relating to the Gamma and Incomplete Gamma Function , 1959 .

[21]  Hyunjoong Kim,et al.  Functional Analysis I , 2017 .

[22]  H. Holzmann,et al.  Weighted angle Radon transform: Convergence rates and efficient estimation , 2017 .

[23]  Vladimir Rokhlin,et al.  Approximate formulae for certain prolate spheroidal wave functions valid for large values of both order and band-limit , 2007 .

[24]  A. Hoorfar,et al.  Approximation of the Lambert W Function and Hyperpower Function , 2007 .

[25]  C. Dion New adaptive strategies for nonparametric estimation in linear mixed models , 2014 .

[26]  Laurent Cavalier,et al.  Efficient estimation of a density in a problem of tomography , 2000 .

[27]  E. Gautier,et al.  Estimates for the SVD of the Truncated Fourier Transform on L2(cosh(b|·|))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{documen , 2019, Journal of Fourier Analysis and Applications.

[28]  Claire Lacour,et al.  Adaptive estimation of the transition density of a particular hidden Markov chain , 2006, math/0611681.

[29]  R. Beran Prediction in random coefficient regression , 1995 .

[30]  Xiaohong Chen,et al.  ON RATE OPTIMALITY FOR ILL-POSED INVERSE PROBLEMS IN ECONOMETRICS , 2007, Econometric Theory.

[31]  Laurent Cavalier,et al.  On the problem of local adaptive estimation in tomography , 2001 .

[32]  H. Landau On the density of phase-space expansions , 1993, IEEE Trans. Inf. Theory.

[33]  Matthew A. Masten Random Coefficients on Endogenous Variables in Simultaneous Equations Models , 2014 .

[34]  Asymptotic equivalence for a model of independent non identically distributed observations , 2003 .

[35]  F. Comte,et al.  Nonparametric estimation for stochastic differential equations with random effects , 2013 .

[36]  Markus Reiss,et al.  Asymptotic equivalence for nonparametric regression with multivariate and random design , 2006, math/0607342.

[37]  Eric Gautier,et al.  Nonparametric Estimation in Random Coefficients Binary Choice Models , 2009, 0907.2451.

[38]  Claire Lacour,et al.  Data‐driven density estimation in the presence of additive noise with unknown distribution , 2011 .

[39]  C. Lacour Rates of convergence for nonparametric deconvolution , 2006, math/0611692.

[40]  Ndrey,et al.  ON NONPARAMETRIC ESTIMATION OF INTERCEPT AND SLOPE DISTRIBUTIONS IN RANDOM COEFFICIENT REGRESSION , 1997 .

[41]  Johannes Schmidt-Hieber,et al.  Tests for qualitative features in the random coefficients model , 2017, Electronic Journal of Statistics.

[42]  Gerard Kerkyacharian,et al.  Regression in random design and warped wavelets , 2004 .

[43]  R. Kress Linear Integral Equations , 1989 .

[44]  Deconvolution with estimated characteristic function of the errors. , 2008 .

[45]  J. Heckman,et al.  A Method for Minimizing the Impact of Distributional Assumptions in Econometric Models for Duration Data , 1984 .

[46]  Rate-optimal nonparametric estimation for random coefficient regression models , 2019, Bernoulli.

[47]  Subspaces with Equal Closure , 2001, math/0111015.

[48]  J. Florens,et al.  Linear Inverse Problems in Structural Econometrics Estimation Based on Spectral Decomposition and Regularization , 2003 .

[49]  W. Fuchs On the eigenvalues of an integral equation arising in the theory of band-limited signals , 1964 .

[50]  E. Gautier,et al.  A triangular treatment effect model with random coefficients in the selection equation , 2011, 1109.0362.

[51]  R. Beran,et al.  Minimum Distance Estimation in Random Coefficient Regression Models , 1994 .

[52]  H. Widom Asymptotic behavior of the eigenvalues of certain integral equations , 1963 .

[53]  Jari Lindberg,et al.  Mathematical concepts of optical superresolution , 2012 .

[54]  Pierre Alquier,et al.  Inverse problems and high-dimensional estimation : stats in the Château Summer School, August 31-September 4, 2009 , 2011 .

[55]  V. Rokhlin,et al.  Prolate Spheroidal Wave Functions of Order Zero , 2013 .

[56]  A. Tsybakov,et al.  Block Thresholding and Sharp Adaptive Estimation in Severely Ill-Posed Inverse Problems , 2004 .

[57]  A. Meister,et al.  The triangular model with random coefficients , 2015 .

[58]  E. Gautier,et al.  Adaptive estimation in the nonparametric random coefficients binary choice model by needlet thresholding , 2011, 1106.3503.

[59]  E. Gautier,et al.  RandomCoefficients: Adaptive estimation in the linear random coefficients model , 2019 .

[60]  Abderrazek Karoui,et al.  Uniform bounds of prolate spheroidal wave functions and eigenvalues decay , 2014 .

[61]  F. Comte,et al.  Adaptive density estimation in the pile-up model involving measurement errors , 2010, 1011.0592.

[62]  Abderrazek Karoui,et al.  New efficient methods of computing the prolate spheroidal wave functions and their corresponding eigenvalues , 2008 .

[63]  A. Bonami,et al.  Uniform Approximation and Explicit Estimates for the Prolate Spheroidal Wave Functions , 2014, 1405.3676.

[64]  Stefan Hoderlein,et al.  Specification testing in random coefficient models , 2018, 1804.03110.

[65]  Alexander Meister Asymptotic equivalence of functional linear regression and a white noise inverse problem , 2011 .

[66]  Enno Mammen,et al.  ANALYZING THE RANDOM COEFFICIENT MODEL NONPARAMETRICALLY , 2009, Econometric Theory.

[67]  A. Bonami,et al.  Spectral decay of the sinc kernel operator and approximations by Prolate Spheroidal Wave Functions. , 2010, 1012.3881.