Adaptive estimation in the linear random coefficients model when regressors have limited variation
暂无分享,去创建一个
[1] Ronald F. Boisvert,et al. NIST Handbook of Mathematical Functions , 2010 .
[2] T. Kurtz,et al. Stochastic equations in infinite dimensions , 2006 .
[3] F. Nazarov. Complete Version of Turan’s Lemma for Trigonometric Polynomials on the Unit Circumference , 2000 .
[4] Milton Abramowitz,et al. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .
[5] Jurgen Frikel,et al. Sparse regularization in limited angle tomography , 2011, 1109.0385.
[6] M. Wand,et al. Multivariate plug-in bandwidth selection , 1994 .
[7] M. Reed. Methods of Modern Mathematical Physics. I: Functional Analysis , 1972 .
[8] A. Goldenshluger,et al. On adaptive minimax density estimation on $$R^d$$Rd , 2012, 1210.1715.
[9] M. Bóna. A Walk Through Combinatorics: An Introduction to Enumeration and Graph Theory , 2006 .
[10] F. Comte,et al. Regression function estimation as a partly inverse problem , 2020, Annals of the Institute of Statistical Mathematics.
[11] A. Tsybakov. On the best rate of adaptive estimation in some inverse problems , 2000 .
[12] Mario Bertero,et al. Introduction to Inverse Problems in Imaging , 1998 .
[13] Non-Asymptotic behaviour of the spectrum of the Sinc Kernel Operator and Related Applications , 2018, 1804.01257.
[14] Pascal Massart,et al. Minimal penalty for Goldenshluger-Lepski method , 2015, 1503.00946.
[15] Alexandre B. Tsybakov,et al. Introduction to Nonparametric Estimation , 2008, Springer series in statistics.
[16] Thomas Merkle. Deconvolving compactly supported densities , 2022 .
[17] P. Maréchal,et al. A variational approach to the inversion of truncated Fourier operators , 2009 .
[18] Bernard A. Mair,et al. Statistical Inverse Estimation in Hilbert Scales , 1996, SIAM J. Appl. Math..
[19] Nicolai Bissantz,et al. Convergence Rates of General Regularization Methods for Statistical Inverse Problems and Applications , 2007, SIAM J. Numer. Anal..
[20] W. Gautschi. Some Elementary Inequalities Relating to the Gamma and Incomplete Gamma Function , 1959 .
[21] Hyunjoong Kim,et al. Functional Analysis I , 2017 .
[22] H. Holzmann,et al. Weighted angle Radon transform: Convergence rates and efficient estimation , 2017 .
[23] Vladimir Rokhlin,et al. Approximate formulae for certain prolate spheroidal wave functions valid for large values of both order and band-limit , 2007 .
[24] A. Hoorfar,et al. Approximation of the Lambert W Function and Hyperpower Function , 2007 .
[25] C. Dion. New adaptive strategies for nonparametric estimation in linear mixed models , 2014 .
[26] Laurent Cavalier,et al. Efficient estimation of a density in a problem of tomography , 2000 .
[27] E. Gautier,et al. Estimates for the SVD of the Truncated Fourier Transform on L2(cosh(b|·|))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{documen , 2019, Journal of Fourier Analysis and Applications.
[28] Claire Lacour,et al. Adaptive estimation of the transition density of a particular hidden Markov chain , 2006, math/0611681.
[29] R. Beran. Prediction in random coefficient regression , 1995 .
[30] Xiaohong Chen,et al. ON RATE OPTIMALITY FOR ILL-POSED INVERSE PROBLEMS IN ECONOMETRICS , 2007, Econometric Theory.
[31] Laurent Cavalier,et al. On the problem of local adaptive estimation in tomography , 2001 .
[32] H. Landau. On the density of phase-space expansions , 1993, IEEE Trans. Inf. Theory.
[33] Matthew A. Masten. Random Coefficients on Endogenous Variables in Simultaneous Equations Models , 2014 .
[34] Asymptotic equivalence for a model of independent non identically distributed observations , 2003 .
[35] F. Comte,et al. Nonparametric estimation for stochastic differential equations with random effects , 2013 .
[36] Markus Reiss,et al. Asymptotic equivalence for nonparametric regression with multivariate and random design , 2006, math/0607342.
[37] Eric Gautier,et al. Nonparametric Estimation in Random Coefficients Binary Choice Models , 2009, 0907.2451.
[38] Claire Lacour,et al. Data‐driven density estimation in the presence of additive noise with unknown distribution , 2011 .
[39] C. Lacour. Rates of convergence for nonparametric deconvolution , 2006, math/0611692.
[40] Ndrey,et al. ON NONPARAMETRIC ESTIMATION OF INTERCEPT AND SLOPE DISTRIBUTIONS IN RANDOM COEFFICIENT REGRESSION , 1997 .
[41] Johannes Schmidt-Hieber,et al. Tests for qualitative features in the random coefficients model , 2017, Electronic Journal of Statistics.
[42] Gerard Kerkyacharian,et al. Regression in random design and warped wavelets , 2004 .
[43] R. Kress. Linear Integral Equations , 1989 .
[44] Deconvolution with estimated characteristic function of the errors. , 2008 .
[45] J. Heckman,et al. A Method for Minimizing the Impact of Distributional Assumptions in Econometric Models for Duration Data , 1984 .
[46] Rate-optimal nonparametric estimation for random coefficient regression models , 2019, Bernoulli.
[47] Subspaces with Equal Closure , 2001, math/0111015.
[48] J. Florens,et al. Linear Inverse Problems in Structural Econometrics Estimation Based on Spectral Decomposition and Regularization , 2003 .
[49] W. Fuchs. On the eigenvalues of an integral equation arising in the theory of band-limited signals , 1964 .
[50] E. Gautier,et al. A triangular treatment effect model with random coefficients in the selection equation , 2011, 1109.0362.
[51] R. Beran,et al. Minimum Distance Estimation in Random Coefficient Regression Models , 1994 .
[52] H. Widom. Asymptotic behavior of the eigenvalues of certain integral equations , 1963 .
[53] Jari Lindberg,et al. Mathematical concepts of optical superresolution , 2012 .
[54] Pierre Alquier,et al. Inverse problems and high-dimensional estimation : stats in the Château Summer School, August 31-September 4, 2009 , 2011 .
[55] V. Rokhlin,et al. Prolate Spheroidal Wave Functions of Order Zero , 2013 .
[56] A. Tsybakov,et al. Block Thresholding and Sharp Adaptive Estimation in Severely Ill-Posed Inverse Problems , 2004 .
[57] A. Meister,et al. The triangular model with random coefficients , 2015 .
[58] E. Gautier,et al. Adaptive estimation in the nonparametric random coefficients binary choice model by needlet thresholding , 2011, 1106.3503.
[59] E. Gautier,et al. RandomCoefficients: Adaptive estimation in the linear random coefficients model , 2019 .
[60] Abderrazek Karoui,et al. Uniform bounds of prolate spheroidal wave functions and eigenvalues decay , 2014 .
[61] F. Comte,et al. Adaptive density estimation in the pile-up model involving measurement errors , 2010, 1011.0592.
[62] Abderrazek Karoui,et al. New efficient methods of computing the prolate spheroidal wave functions and their corresponding eigenvalues , 2008 .
[63] A. Bonami,et al. Uniform Approximation and Explicit Estimates for the Prolate Spheroidal Wave Functions , 2014, 1405.3676.
[64] Stefan Hoderlein,et al. Specification testing in random coefficient models , 2018, 1804.03110.
[65] Alexander Meister. Asymptotic equivalence of functional linear regression and a white noise inverse problem , 2011 .
[66] Enno Mammen,et al. ANALYZING THE RANDOM COEFFICIENT MODEL NONPARAMETRICALLY , 2009, Econometric Theory.
[67] A. Bonami,et al. Spectral decay of the sinc kernel operator and approximations by Prolate Spheroidal Wave Functions. , 2010, 1012.3881.