Positron emission tomography in non-Hodgkin's lymphoma: assessment of chemotherapy with fluorodeoxyglucose.

Positron emission tomography (PET) using F-18 fluorodeoxyglucose (FDG) was performed in non-Hodgkin's lymphoma (NHL), which is known to be highly responsive to chemotherapy, but also yields variable treatment results to answer the following questions: (1) What is the extent and time course of changes in FDG utilization in response to chemotherapy? (2) Are the changes of FDG uptake at early time points of chemotherapy predictive for therapy outcome? (3) Which quantitative FDG parameter provides the most sensitive measures of initial tumor response? Dynamic PET scans were performed in 11 patients at baseline and 1 and 6 weeks after initiation of chemotherapy. Based on attenuation corrected images acquired 30 to 60 minutes postinjection, standardized uptake values (SUV) were determined. Arterial input functions were estimated from vascular F-18 activity and the metabolic rates for FDG (MRFDG) were calculated using Patlak analysis. Before chemotherapy, high FDG uptake was found in all lesions (SUV[max] 13.3 +/- 4.2). Seven days after initiation of chemotherapy, tumor FDG uptake decreased 60% (SUV[max]). A further decrease of 42% was seen at day 42 resulting in a total decrease of 79% from baseline to day 42. During a follow-up of 16.0 +/- 4.2 months, six of the 11 patients continued to show complete remission. Seven days after initiation of chemotherapy, this group of patients displayed significantly lower mean MRFDG than the group of patients with relapse. At day 42, all parameters of FDG uptake showed a significant difference for both patient groups. The relative change of MRFDG from baseline to day 42, as well as from day 7 to day 42, was significantly larger as compared with SUV parameters. Standard chemotherapy of patients with NHL causes rapid decrease of tumor FDG uptake as early as 7 days after treatment, which continues to decline during therapy, indicating the sensitivity of metabolic signals to chemotherapeutic interventions. FDG uptake at 42 days after therapy was superior in prediction of long-term outcome over day 7 parameters. Dynamic data acquisition combined with Patlak analysis of FDG kinetics may provide superior information in therapy monitoring.

[1]  K. Hamacher,et al.  Efficient stereospecific synthesis of no-carrier-added 2-[18F]-fluoro-2-deoxy-D-glucose using aminopolyether supported nucleophilic substitution. , 1986, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[2]  T. Fukumura,et al.  Assessment of response to cancer therapy using fluorine-18-fluorodeoxyglucose and positron emission tomography. , 1991, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[3]  R. Fisher Treatment of aggressive non‐hodgkin's lymphomas: Lessons from the past 10 years , 1994 .

[4]  R L Wahl,et al.  Metabolic monitoring of breast cancer chemohormonotherapy using positron emission tomography: initial evaluation. , 1993, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[5]  R L Wahl,et al.  In vitro assessment of 2-fluoro-2-deoxy-D-glucose, L-methionine and thymidine as agents to monitor the early response of a human adenocarcinoma cell line to radiotherapy. , 1993, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[6]  U Ruotsalainen,et al.  Influence of the blood glucose concentration on FDG uptake in cancer--a PET study. , 1993, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[7]  C S Patlak,et al.  Graphical Evaluation of Blood-to-Brain Transfer Constants from Multiple-Time Uptake Data , 1983, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[8]  R L Wahl,et al.  Lung cancer: reproducibility of quantitative measurements for evaluating 2-[F-18]-fluoro-2-deoxy-D-glucose uptake at PET. , 1995, Radiology.

[9]  R L Wahl,et al.  Standardized uptake values of normal tissues at PET with 2-[fluorine-18]-fluoro-2-deoxy-D-glucose: variations with body weight and a method for correction. , 1993, Radiology.

[10]  K. Någren,et al.  Uptake of carbon-11-methionine and fluorodeoxyglucose in non-Hodgkin's lymphoma: a PET study. , 1991, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[11]  H. Minn,et al.  Evaluation of treatment response to radiotherapy in head and neck cancer with fluorine-18 fluorodeoxyglucose. , 1988, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[12]  A. D. Van den Abbeele,et al.  Procedure guideline for gallium scintigraphy in the evaluation of malignant disease. Society of Nuclear Medicine. , 1997, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[13]  Otto Warburn,et al.  THE METABOLISM OF TUMORS , 1931 .

[14]  G. Canellos,et al.  Residual mass in lymphoma may not be residual disease. , 1988, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[15]  K. Lennert,et al.  Updated Kiel classification for lymphomas , 1989, The Journal of pathology.

[16]  B. Leber,et al.  Randomized phase II comparison of standard CHOP with weekly CHOP in elderly patients with non-Hodgkin's lymphoma. , 1995, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[17]  M Schwaiger,et al.  Metabolic characterization of breast tumors with positron emission tomography using F-18 fluorodeoxyglucose. , 1996, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[18]  B. Glimelius,et al.  Predicting malignancy grade with PET in non-Hodgkin's lymphoma. , 1995, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[19]  G. van Kaick,et al.  Fluorodeoxyglucose uptake in vitro: aspects of method and effects of treatment with gemcitabine. , 1994, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[20]  J. Tabernero,et al.  CHOP chemotherapy of intermediate and high-grade non-Hodgkin's lymphoma. , 1994, Acta oncologica.

[21]  D. Neuberg,et al.  Early restaging gallium scans predict outcome in poor-prognosis patients with aggressive non-Hodgkin's lymphoma treated with high-dose CHOP chemotherapy. , 1997, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[22]  L M Hamberg,et al.  The dose uptake ratio as an index of glucose metabolism: useful parameter or oversimplification? , 1994, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[23]  G. van Kaick,et al.  PET studies of fluorodeoxyglucose metabolism in patients with recurrent colorectal tumors receiving radiotherapy. , 1991, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[24]  J. Bergh,et al.  Positron emission tomography studies in patients with locally advanced and/or metastatic breast cancer: a method for early therapy evaluation? , 1995, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[25]  T M Grogan,et al.  Comparison of a standard regimen (CHOP) with three intensive chemotherapy regimens for advanced non-Hodgkin's lymphoma. , 1993, The New England journal of medicine.

[26]  M. Phelps,et al.  Quantitating tumor glucose metabolism with FDG and PET. , 1992, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[27]  R. Hardoff,et al.  Uptake of gallium-67 citrate and [2-3H]deoxyglucose in the tumor model, following chemotherapy and radiotherapy. , 1985, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[28]  J. Cosset,et al.  Thoracic CT-scanning follow-up of residual mediastinal masses after treatment of Hodgkin's disease. , 1988, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[29]  H. Minn,et al.  Increased glucose metabolism in untreated non-Hodgkin's lymphoma: a study with positron emission tomography and fluorine-18-fluorodeoxyglucose. , 1995, Blood.

[30]  H C Charles,et al.  Monitoring of neoadjuvant therapy response of soft-tissue and musculoskeletal sarcoma using fluorine-18-FDG PET. , 1996, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[31]  David J. Yang,et al.  Evaluation of preoperative chemotherapy using PET with fluorine-18-fluorodeoxyglucose in breast cancer. , 1996, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[32]  A. Oguz,et al.  Evaluation of therapy response in children with untreated malignant lymphomas using technetium-99m-sestamibi. , 1997, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[33]  L G Strauss,et al.  The applications of PET in clinical oncology. , 1991, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[34]  K. Ishiwata,et al.  Tracer feasibility for monitoring tumor radiotherapy: a quadruple tracer study with fluorine-18-fluorodeoxyglucose or fluorine-18-fluorodeoxyuridine, L-[methyl-14C]methionine, [6-3H]thymidine, and gallium-67. , 1991, Journal of Nuclear Medicine.

[35]  A. Miller,et al.  Reporting results of cancer treatment , 1981, Cancer.

[36]  O. Hoekstra,et al.  Early treatment response in malignant lymphoma, as determined by planar fluorine-18-fluorodeoxyglucose scintigraphy. , 1993, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[37]  N. Alpert,et al.  FDG-PET in oncology: there's more to it than looking at pictures. , 1993, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[38]  J. Armitage,et al.  What is the role of third generation regimens for initial therapy of non-Hodgkin's lymphomas? , 1993, Leukemia & lymphoma.

[39]  E. Rota Kops,et al.  The influence of plasma glucose levels on fluorine-18-fluorodeoxyglucose uptake in bronchial carcinomas. , 1993, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[40]  U Ruotsalainen,et al.  Comparison of fluorine-18-fluorodeoxyglucose and carbon-11-methionine in head and neck cancer. , 1993, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.