Steady discrete shocks of high-order RBC schemes

Exact expressions of steady discrete shocks are found for a class of dissipative compact schemes approximating a one-dimensional nonlinear hyperbolic problem with a 3rd, 5th and 7th order of accuracy. A discrete solution is given explicitly for the inviscid Burgers equation and the oscillatory nature of the shock profiles is determined according to the scheme order and to the shock location with respect to the mesh.

[1]  Denis Serre,et al.  Discrete Shock Profiles: Existence and Stability , 2007 .

[2]  Philip L. Roe,et al.  Shock Capturing Anomalies and the Jump Conditions in One Dimension , 2011 .

[3]  Denis Serre,et al.  Unstable Godunov Discrete Profiles for Steady Shock Waves , 1998 .

[4]  High-order residual-based compact schemes for aerodynamics and aeroacoustics , 2012 .

[5]  P. Roe Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes , 1997 .

[6]  G. Kreiss,et al.  An investigation of the internal structure of shock profiles for shock capturing schemes , 2007 .

[7]  Tai-Ping Liu,et al.  Continuum shock profiles for discrete conservation laws I: Construction , 1999 .

[8]  Rémi Abgrall,et al.  Residual distribution schemes: Current status and future trends , 2006 .

[9]  Christophe Eric Corre,et al.  A residual-based compact scheme for the compressible Navier-Stokes equations , 2001 .

[10]  M. Hafez,et al.  Some anomalies of numerical simulation of shock waves. Part I: inviscid flows , 1999 .

[11]  Sylvie Benzoni-Gavage,et al.  Existence of semi-discrete shocks , 2001 .

[12]  Thomas W. Roberts,et al.  The behavior of flux difference splitting schemes near slowly moving shock waves , 1990 .

[13]  D. Michelson Discrete shocks for difference approximations to systems of conservation laws , 1984 .

[14]  Alain Lerat,et al.  On the design of high order residual-based dissipation for unsteady compressible flows , 2013, J. Comput. Phys..

[15]  Haitao Fan Existence of discrete shock profiles of a class of monotonicity preserving schemes for conservation laws , 2001, Math. Comput..

[16]  High-order residual-based compact schemes for compressible inviscid flows , 2007 .

[17]  Philip L. Roe,et al.  On Postshock Oscillations Due to Shock Capturing Schemes in Unsteady Flows , 1997 .

[18]  James Ralston,et al.  Discrete shock profiles for systems of conservation laws , 1979 .

[19]  Yiorgos Sokratis Smyrlis,et al.  Existence and stability of stationary profiles of the lw scheme , 1990 .

[20]  Tai-Ping Liu,et al.  CONTINUUM SHOCK PROFILES FOR DISCRETE CONSERVATION LAWS II: STABILITY , 1999 .

[21]  Sylvie Benzoni-Gavage,et al.  Semi-discrete shock profiles for hyperbolic systems of conservation laws , 1998 .

[22]  Jean-Marc Moschetta,et al.  Shock wave instability and the carbuncle phenomenon: same intrinsic origin? , 2000, Journal of Fluid Mechanics.

[23]  Smadar Karni,et al.  Computations of Slowly Moving Shocks , 1997 .