Variational mesh segmentation via quadric surface fitting

We present a new variational method for mesh segmentation by fitting quadric surfaces. Each component of the resulting segmentation is represented by a general quadric surface (including plane as a special case). A novel energy function is defined to evaluate the quality of the segmentation, which combines both L^2 and L^2^,^1 metrics from a triangle to a quadric surface. The Lloyd iteration is used to minimize the energy function, which repeatedly interleaves between mesh partition and quadric surface fitting. We also integrate feature-based and simplification-based techniques in the segmentation framework, which greatly improve the performance. The advantages of our algorithm are demonstrated by comparing with the state-of-the-art methods.

[1]  James F. O'Brien,et al.  Interpolating and approximating implicit surfaces from polygon soup , 2005, SIGGRAPH Courses.

[2]  Hans-Peter Seidel,et al.  Mesh segmentation driven by Gaussian curvature , 2005, The Visual Computer.

[3]  Vladimir Kolmogorov,et al.  An experimental comparison of min-cut/max- flow algorithms for energy minimization in vision , 2001, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[4]  Diego F. Nehab,et al.  Efficiently combining positions and normals for precise 3D geometry , 2005, SIGGRAPH 2005.

[5]  Atilla Baskurt,et al.  A new CAD mesh segmentation method, based on curvature tensor analysis , 2005, Comput. Aided Des..

[6]  Leonidas J. Guibas,et al.  Shape segmentation using local slippage analysis , 2004, SGP '04.

[7]  Hans-Peter Seidel,et al.  Feature sensitive mesh segmentation with mean shift , 2005, International Conference on Shape Modeling and Applications 2005 (SMI' 05).

[8]  Leif Kobbelt,et al.  A Robust Two‐Step Procedure for Quad‐Dominant Remeshing , 2006, Comput. Graph. Forum.

[9]  Andrew W. Fitzgibbon,et al.  High-level model acquisition from range images , 1997, Comput. Aided Des..

[10]  Leif Kobbelt,et al.  Structure Recovery via Hybrid Variational Surface Approximation , 2005, Comput. Graph. Forum.

[11]  Ayellet Tal,et al.  Paper craft models from meshes , 2006, The Visual Computer.

[12]  Ayellet Tal,et al.  Mesh segmentation using feature point and core extraction , 2005, The Visual Computer.

[13]  Tamás Várady,et al.  New Trends in Digital Shape Reconstruction , 2005, IMA Conference on the Mathematics of Surfaces.

[14]  Ralph R. Martin,et al.  Reverse engineering of geometric models - an introduction , 1997, Comput. Aided Des..

[15]  Jian Sun,et al.  Lazy snapping , 2004, SIGGRAPH 2004.

[16]  Hans-Jürgen Warnecke,et al.  Orthogonal Distance Fitting of Implicit Curves and Surfaces , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[17]  Donald D. Hoffman,et al.  Parts of recognition , 1984, Cognition.

[18]  Hao Zhang,et al.  Mesh Segmentation via Recursive and Visually Salient Spectral Cuts , 2005 .

[19]  Ramesh C. Jain,et al.  Segmentation through Variable-Order Surface Fitting , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[20]  Ross T. Whitaker,et al.  Partitioning 3D Surface Meshes Using Watershed Segmentation , 1999, IEEE Trans. Vis. Comput. Graph..

[21]  Szymon Rusinkiewicz,et al.  Eurographics Symposium on Geometry Processing (2007) Symmetry-enhanced Remeshing of Surfaces , 2022 .

[22]  Josef Hoschek,et al.  Handbook of Computer Aided Geometric Design , 2002 .

[23]  Masayoshi Hashima,et al.  A Thin-plate CAD Mesh Model Splitting Approach Based on Fitting Primitives , 2010, TPCG.

[24]  Leif Kobbelt,et al.  Automatic Generation of Structure Preserving Multiresolution Models , 2005, Comput. Graph. Forum.

[25]  Leif Kobbelt,et al.  Simplification and Compression of 3D Meshes , 2002, Tutorials on Multiresolution in Geometric Modelling.

[26]  Kenji Shimada,et al.  Surface mesh segmentation and smooth surface extraction through region growing , 2005, Comput. Aided Geom. Des..

[27]  Ayellet Tal,et al.  Hierarchical mesh decomposition using fuzzy clustering and cuts , 2003, ACM Trans. Graph..

[28]  Sylvain Petitjean,et al.  A survey of methods for recovering quadrics in triangle meshes , 2002, CSUR.

[29]  Marc Alexa,et al.  Sparse low-degree implicit surfaces with applications to high quality rendering, feature extraction, and smoothing , 2005, SGP '05.

[30]  Keenan Crane,et al.  Rectangular multi-chart geometry images , 2006, SGP '06.

[31]  Ligang Liu,et al.  Easy Mesh Cutting , 2006, Comput. Graph. Forum.

[32]  Bruno Lévy,et al.  Least squares conformal maps for automatic texture atlas generation , 2002, ACM Trans. Graph..

[33]  Gabriel Taubin,et al.  Estimation of Planar Curves, Surfaces, and Nonplanar Space Curves Defined by Implicit Equations with Applications to Edge and Range Image Segmentation , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[34]  Donald D. Hoffman,et al.  Salience of visual parts , 1997, Cognition.

[35]  Dong-Ming Yan,et al.  Quadric Surface Extraction by Variational Shape Approximation , 2006, GMP.

[36]  S. P. Lloyd,et al.  Least squares quantization in PCM , 1982, IEEE Trans. Inf. Theory.

[37]  Hans-Peter Seidel,et al.  Mesh scissoring with minima rule and part salience , 2005, Comput. Aided Geom. Des..

[38]  Idan Shatz,et al.  Paper craft models from meshes, The Visual Computer , 2006 .

[39]  F. Bookstein Fitting conic sections to scattered data , 1979 .

[40]  Alla Sheffer,et al.  D‐Charts: Quasi‐Developable Mesh Segmentation , 2005, Comput. Graph. Forum.

[41]  Gabriel Taubin,et al.  An improved algorithm for algebraic curve and surface fitting , 1993, 1993 (4th) International Conference on Computer Vision.

[42]  Yutaka Ohtake,et al.  Hierarchical error-driven approximation of implicit surfaces from polygonal meshes , 2006, SGP '06.

[43]  G. A. Watson,et al.  A class of methods for fitting a curve or surface to data by minimizing the sum of squares of orthogonal distances , 2003 .

[44]  Pedro V. Sander,et al.  Multi-Chart Geometry Images , 2003, Symposium on Geometry Processing.

[45]  Y. H. Chen,et al.  Quadric surface extraction using genetic algorithms , 1999, Comput. Aided Des..

[46]  Mathieu Desbrun,et al.  Variational shape approximation , 2004, SIGGRAPH 2004.

[47]  H. Seidel,et al.  Multi-level partition of unity implicits , 2003 .

[48]  Dong-Ming Yan,et al.  Efficient and robust reconstruction of botanical branching structure from laser scanned points , 2009, 2009 11th IEEE International Conference on Computer-Aided Design and Computer Graphics.

[49]  Karan Singh,et al.  Extraction and remeshing of ellipsoidal representations from mesh data , 2005, Graphics Interface.

[50]  Michael Garland,et al.  Hierarchical face clustering on polygonal surfaces , 2001, I3D '01.

[51]  Eric L. Miller,et al.  Three-Dimensional Surface Mesh Segmentation Using Curvedness-Based Region Growing Approach , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[52]  Paolo Cignoni,et al.  Metro: Measuring Error on Simplified Surfaces , 1998, Comput. Graph. Forum.

[53]  陈宝权 GlobFit: Consistently Fitting Primitives by Discovering Global Relations , 2011 .

[54]  Pedro V. Sander,et al.  Texture mapping progressive meshes , 2001, SIGGRAPH.

[55]  D. Ross Computer-aided design , 1961, CACM.

[56]  Marco Attene,et al.  Hierarchical mesh segmentation based on fitting primitives , 2006, The Visual Computer.

[57]  Wp Wang Modelling and processing with quadric surfaces, (Chapter 31), , 2002 .