Chaotic dynamical systems with a View towards statistics: a review

[1]  G. Nicolis,et al.  Evidence for climatic attractors , 1987, Nature.

[2]  B. LeBaron,et al.  Nonlinear Dynamics and Stock Returns , 2021, Cycles and Chaos in Economic Equilibrium.

[3]  Eckmann,et al.  Liapunov exponents from time series. , 1986, Physical review. A, General physics.

[4]  D. Ruelle Chaotic evolution and strange attractors , 1989 .

[5]  Pierre Collet,et al.  Universal properties of maps on an interval , 1980 .

[6]  J. Elsner,et al.  The weather attractor over very short timescales , 1988, Nature.

[7]  Y. Kifer Ergodic theory of random transformations , 1986 .

[8]  M. Feigenbaum The universal metric properties of nonlinear transformations , 1979 .

[9]  C. D. Cutler Some results on the behavior and estimation of the fractal dimensions of distributions on attractors , 1991 .

[10]  D. Mayer,et al.  Approach to equilibrium for locally expanding maps in ℝk , 1984 .

[11]  Itamar Procaccia,et al.  Complex or just complicated? , 1988, Nature.

[12]  P. Grassberger Evidence for climatic attractors , 1987, Nature.

[13]  F. Ledrappier,et al.  The metric entropy of diffeomorphisms Part I: Characterization of measures satisfying Pesin's entropy formula , 1985 .

[14]  David Ruelle,et al.  A MEASURE ASSOCIATED WITH AXIOM-A ATTRACTORS. , 1976 .

[15]  I. Stewart Does God Play Dice? The New Mathematics of Chaos , 1989 .

[16]  L. Young Dimension, entropy and Lyapunov exponents , 1982, Ergodic Theory and Dynamical Systems.

[17]  Mitchell J. Feigenbaum,et al.  The transition to aperiodic behavior in turbulent systems , 1980 .

[18]  D. Ruelle Small random perturbations of dynamical systems and the definition of attractors , 1981 .

[19]  A. Gallant,et al.  Finding Chaos in Noisy Systems , 1992 .

[20]  P. Grassberger,et al.  Measuring the Strangeness of Strange Attractors , 1983 .

[21]  F. Ledrappier,et al.  The metric entropy of diffeomorphisms Part II: Relations between entropy, exponents and dimension , 1985 .

[22]  C. D. Cutler Connecting ergodicity and dimension in dynamical systems , 1990, Ergodic Theory and Dynamical Systems.

[23]  Gerhard Keller,et al.  Rigorous statistical procedures for data from dynamical systems , 1986 .

[24]  F. Ledrappier,et al.  Some relations between dimension and Lyapounov exponents , 1981 .

[25]  D. Ruelle,et al.  The Claude Bernard Lecture, 1989 - Deterministic chaos: the science and the fiction , 1990, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[26]  P. Walters Introduction to Ergodic Theory , 1977 .

[27]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[28]  G. Nicolis,et al.  Is there a climatic attractor? , 1984, Nature.

[29]  R. Mañé,et al.  On the dimension of the compact invariant sets of certain non-linear maps , 1981 .

[30]  P. Grassberger Do climatic attractors exist? , 1986, Nature.

[31]  David Ruelle,et al.  An inequality for the entropy of differentiable maps , 1978 .

[32]  F. Takens,et al.  On the nature of turbulence , 1971 .

[33]  I. Ibragimov,et al.  Independent and stationary sequences of random variables , 1971 .

[34]  M. Denker,et al.  On U-statistics and v. mise’ statistics for weakly dependent processes , 1983 .

[35]  M. Feigenbaum Quantitative universality for a class of nonlinear transformations , 1978 .

[36]  R. Devaney An Introduction to Chaotic Dynamical Systems , 1990 .

[37]  D. Ruelle Ergodic theory of differentiable dynamical systems , 1979 .

[38]  D. Ruelle,et al.  Ergodic theory of chaos and strange attractors , 1985 .

[39]  Franz Hofbauer,et al.  Ergodic properties of invariant measures for piecewise monotonic transformations , 1982 .

[40]  R. Bowen Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms , 1975 .

[41]  V. I. Oseledec A multiplicative ergodic theorem: Lyapunov characteristic num-bers for dynamical systems , 1968 .

[42]  Ju I Kifer ON SMALL RANDOM PERTURBATIONS OF SOME SMOOTH DYNAMICAL SYSTEMS , 1974 .

[43]  P. Grassberger,et al.  Characterization of experimental (noisy) strange attractors , 1984 .

[44]  M. Casdagli Chaos and Deterministic Versus Stochastic Non‐Linear Modelling , 1992 .

[45]  Kenneth Falconer,et al.  Fractal Geometry: Mathematical Foundations and Applications , 1990 .

[46]  Pierre Collet,et al.  On the abundance of aperiodic behaviour for maps on the interval , 1980 .

[47]  M. Jakobson Absolutely continuous invariant measures for one-parameter families of one-dimensional maps , 1981 .

[48]  Y. Kifer Random Perturbations of Dynamical Systems , 1988 .

[49]  Pierre Collet,et al.  Positive Liapunov exponents and absolute continuity for maps of the interval , 1983, Ergodic Theory and Dynamical Systems.