On the Growth Rate of the Input-Output Weight Distribution of Convolutional Encoders

In this paper, exact formul\ae of the input-output weight distribution function and its exponential growth rate are derived for truncated convolutional encoders. In particular, these weight distribution functions are expressed in terms of generating functions of error events associated with a minimal realization of the encoder. Although explicit analytic expressions can be computed for relatively small truncation lengths, the explicit expressions become prohibitively complex to compute as the truncation lengths and the weights increase. Fortunately, a very accurate asymptotic expansion can be derived using the multidimensional saddle-point method (MSP method). This approximation is substantially easier to evaluate and is used to obtain an expression of the asymptotic spectral function, and to prove continuity and concavity in its domain (convex and closed). Finally, this approach is able to guarantee that the sequence of exponential growth rates converges uniformly to the asymptotic limit, and to estimate...

[1]  Robert J. McEliece,et al.  The Theory of Information and Coding , 1979 .

[2]  Robert J. McEliece,et al.  Coding theorems for turbo code ensembles , 2002, IEEE Trans. Inf. Theory.

[3]  Michael Lentmaier,et al.  Some Results Concerning the Design and Decoding of Turbo-Codes , 2001, Probl. Inf. Transm..

[4]  Øyvind Ytrehus,et al.  Turbo Decoding on the Binary Erasure Channel: Finite-Length Analysis and Turbo Stopping Sets , 2006, IEEE Transactions on Information Theory.

[5]  Chiara Ravazzi,et al.  Spectra and Minimum Distances of Repeat Multiple–Accumulate Codes , 2009, IEEE Transactions on Information Theory.

[6]  Alexander Barg,et al.  Random codes: Minimum distances and error exponents , 2002, IEEE Trans. Inf. Theory.

[7]  D. Costello,et al.  On the Distance Growth Properties of Double Serially Concatenated Convolutional Codes , 2008 .

[8]  W. Rudin,et al.  Fourier Analysis on Groups. , 1965 .

[9]  Heide Gluesing-Luerssen On the weight distribution of convolutional codes , 2005, ArXiv.

[10]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[11]  Dariush Divsalar,et al.  Analysis, Design, and Iterative Decoding of Double Serially Concatenated Codes with Interleavers , 1998, IEEE J. Sel. Areas Commun..

[12]  Shlomo Shamai,et al.  Improved upper bounds on the ML decoding error probability of parallel and serial concatenated turbo codes via their ensemble distance spectrum , 2000, IEEE Trans. Inf. Theory.

[13]  V. Rathi,et al.  On the Asymptotic Weight and Stopping Set Distribution of Regular LDPC Ensembles , 2005, IEEE Transactions on Information Theory.

[14]  Edward A. Bender,et al.  Central and Local Limit Theorems Applied to Asymptotic Enumeration. III. Matrix Recursions , 1983, J. Comb. Theory, Ser. A.

[15]  Marco Chiani,et al.  Growth Rate of the Weight Distribution of Doubly-Generalized LDPC Codes: General Case and Efficient Evaluation , 2009, GLOBECOM 2009 - 2009 IEEE Global Telecommunications Conference.

[16]  Paul H. Siegel,et al.  On the capacity of finite state channels and the analysis of convolutional accumulate-m codes , 2003 .

[17]  Hui Jin,et al.  Analysis and design of turbo-like codes , 2001 .

[18]  Dariush Divsalar,et al.  Coding theorems for 'turbo-like' codes , 1998 .

[19]  Rüdiger L. Urbanke,et al.  Modern Coding Theory , 2008 .

[20]  Marc P. C. Fossorier,et al.  Ensemble weight enumerators for protograph-based doubly generalized LDPC codes , 2008, 2008 IEEE International Symposium on Information Theory.

[21]  Sergio Benedetto,et al.  Unveiling turbo codes: some results on parallel concatenated coding schemes , 1996, IEEE Trans. Inf. Theory.

[22]  R. Urbanke,et al.  On the minimum distance of parallel and serially concatenated codes , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).

[23]  Rüdiger L. Urbanke,et al.  Weight Distribution of Low-Density Parity-Check Codes , 2006, IEEE Transactions on Information Theory.

[24]  W. Rudin Principles of mathematical analysis , 1964 .

[25]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[26]  Jörg Kliewer,et al.  Minimum distance bounds for multiple-serially concatenated code ensembles , 2008, 2008 IEEE International Symposium on Information Theory.

[27]  Robert G. Gallager,et al.  The random coding bound is tight for the average code (Corresp.) , 1973, IEEE Trans. Inf. Theory.

[28]  Shu Lin,et al.  Error control coding : fundamentals and applications , 1983 .

[29]  Alexandre Graell i Amat,et al.  Good concatenated code ensembles for the binary erasure channel , 2009, IEEE Journal on Selected Areas in Communications.

[30]  Marco Chiani,et al.  On the Growth Rate of the Weight Distribution of Irregular Doubly Generalized LDPC Codes , 2008, IEEE Transactions on Information Theory.

[31]  R. Tennant Algebra , 1941, Nature.

[32]  I. Good Saddle-point Methods for the Multinomial Distribution , 1957 .

[33]  Jörg Kliewer,et al.  Trapping set enumerators for repeat multiple accumulate code ensembles , 2009, 2009 IEEE International Symposium on Information Theory.

[34]  Alon Orlitsky,et al.  Stopping set distribution of LDPC code ensembles , 2003, IEEE Transactions on Information Theory.

[35]  Alexandre Graell i Amat,et al.  Pseudocodewords of linear programming decoding of 3-dimensional turbo codes , 2011, 2011 IEEE International Symposium on Information Theory Proceedings.

[36]  Rolf Johannesson,et al.  Fundamentals of Convolutional Coding , 1999 .

[37]  Emre Telatar,et al.  On the Asymptotic Input-Output Weight Distributions and Thresholds of Convolutional and Turbo-Like Codes , 2006 .

[38]  Kellen Petersen August Real Analysis , 2009 .

[39]  Alain Glavieux,et al.  Reflections on the Prize Paper : "Near optimum error-correcting coding and decoding: turbo codes" , 1998 .

[40]  Philippe Flajolet,et al.  Analytic Combinatorics , 2009 .

[41]  Robert G. Gallager,et al.  A simple derivation of the coding theorem and some applications , 1965, IEEE Trans. Inf. Theory.

[42]  A. Glavieux,et al.  Near Shannon limit error-correcting coding and decoding: Turbo-codes. 1 , 1993, Proceedings of ICC '93 - IEEE International Conference on Communications.

[43]  Chiara Ravazzi,et al.  Hayman-like techniques for computing input-output weight distribution of convolutional encoders , 2010, 2010 IEEE International Symposium on Information Theory.

[44]  Danièle Gardy,et al.  Some results on the asymptotic behaviour of coefficients of large powers of functions , 1995, Discret. Math..

[45]  F. Fagnani,et al.  Minimum distance properties of multiple-serially concatenated codes , 2010, 2010 6th International Symposium on Turbo Codes & Iterative Information Processing.