The von Kármán Sodium experiment: Turbulent dynamical dynamos
暂无分享,去创建一个
Florent Ravelet | Jean-François Pinton | Michael Berhanu | Bérengère Dubrulle | Romain Volk | Nicolas Mordant | Arnaud Chiffaudel | Stéphan Fauve | François Daviaud | Philippe Odier | François Pétrélis | J. Pinton | S. Fauve | B. Dubrulle | P. Odier | F. Daviaud | A. Chiffaudel | F. Ravelet | N. Plihon | M. Bourgoin | R. Monchaux | M. Berhanu | R. Volk | N. Mordant | Sébastien Aumaître | Romain Monchaux | Mickaël Bourgoin | Nicolas Plihon | F. Pétrélis | S. Aumaitre
[1] Sasa Kenjeres,et al. Numerical insights into magnetic dynamo action in a turbulent regime , 2007 .
[2] J. Duistermaat,et al. Geomagnetic reversals and the stochastic exit problem , 2004 .
[3] C. Jones,et al. A convection driven geodynamo reversal model , 1999 .
[4] H. K. Moffatt. Magnetic Field Generation in Electrically Conducting Fluids , 1978 .
[5] J. Pinton,et al. Fluctuation of magnetic induction in von Kármán swirling flows , 2005, physics/0511204.
[6] J. Valet. Time variations in geomagnetic intensity , 2003 .
[7] M D Nornberg,et al. Turbulent diamagnetism in flowing liquid sodium. , 2007, Physical review letters.
[8] R. Stepanov,et al. Mean electromotive force due to turbulence of a conducting fluid in the presence of mean flow. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.
[9] F. Daviaud,et al. Experimental measurement of the scale-by-scale momentum transport budget in a turbulent shear flow , 2004 .
[10] J. Larmor. 17. How Could a Rotating Body such as the Sun Become a Magnet , 1979 .
[11] L. Meynadier,et al. Geomagnetic dipole strength and reversal rate over the past two million years , 2005, Nature.
[12] M D Nornberg,et al. Intermittent magnetic field excitation by a turbulent flow of liquid sodium. , 2006, Physical review letters.
[13] F. Daviaud,et al. Supercritical transition to turbulence in an inertially driven von Kármán closed flow , 2008, Journal of Fluid Mechanics.
[14] Wetting and particle adsorption in nanoflows , 2004, cond-mat/0406291.
[15] G. Roberts,et al. Dynamo action of fluid motions with two-dimensional periodicity , 1972, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.
[16] M. Brachet,et al. Dynamo action in the Taylor-Green vortex near threshold , 1997 .
[17] S Kenjeres,et al. Numerical simulation of a turbulent magnetic dynamo. , 2007, Physical review letters.
[18] J. McWilliams,et al. Critical magnetic Prandtl number for small-scale dynamo. , 2003, Physical review letters.
[19] J. Pinton,et al. Characterization of Turbulence in a Closed Flow , 1997 .
[20] Patrick Tabeling,et al. Statistics of Turbulence between Two Counterrotating Disks in Low-Temperature Helium Gas , 1994 .
[21] S. Fauve,et al. On the magnetic fields generated by experimental dynamos , 2007, 0709.0234.
[22] A. Tilgner. A kinematic dynamo with a small scale velocity field , 1997 .
[23] B. Dubrulle,et al. Magnetic field reversals in an experimental turbulent dynamo , 2007, physics/0701076.
[24] Romain Monchaux. Mécanique statistique et effet dynamo dans un écoulement de von Karman turbulent , 2007 .
[25] Thomas M. Antonsen,et al. Blowout bifurcations and the onset of magnetic dynamo action , 2001 .
[26] Vladimir Igorevich Arnold,et al. Geometrical Methods in the Theory of Ordinary Differential Equations , 1983 .
[27] J. Pinton,et al. Dynamo action in an annular array of helical vortices , 2008 .
[28] F. Plunian,et al. Subharmonic Dynamo Action in the Roberts Flow , 2002 .
[29] P. Chossat,et al. Dynamo and dynamics, a mathematical challenge , 2001 .
[30] D. Lathrop,et al. Characterization of experimental dynamos , 2000 .
[31] B. Dubrulle,et al. Bifurcations and dynamo action in a Taylor–Green flow , 2007 .
[32] R. Stieglitz,et al. Experimental demonstration of a homogeneous two-scale dynamo , 2000 .
[33] S. Fauve,et al. Inhibition of the dynamo effect by phase fluctuations , 2006 .
[34] F. Lowes,et al. Geomagnetic Dynamo: An Improved Laboratory Model , 1968, Nature.
[35] Asymmetric polarity reversals, bimodal field distribution, and coherence resonance in a spherically symmetric mean-field dynamo model. , 2004, Physical review letters.
[36] S. I. Braginskii. KINEMATIC MODELS OF THE EARTH'S HYDROMAGNETIC DYNAMO , 1964 .
[37] S. Fauve,et al. Saturation of the magnetic field above the dynamo threshold , 2001 .
[38] Walden,et al. Traveling waves and chaos in convection in binary fluid mixtures. , 1985, Physical review letters.
[39] J. Burguete,et al. Numerical study of homogeneous dynamo based on experimental von Kármán type flows , 2003, physics/0301032.
[40] V. Kirk,et al. Chaotically modulated stellar dynamos , 1995 .
[41] E. Dormy,et al. Numerical models of the geodynamo and observational constraints , 2000 .
[42] Jean-François Pinton,et al. Simulation of induction at low magnetic Prandtl number. , 2004, Physical review letters.
[43] W. Shew,et al. Laboratory experiments on the transition to MHD dynamos , 2001 .
[44] G. Gerbeth,et al. Riga Dynamo Experiment , 2001 .
[45] Jean-François Pinton,et al. Correction to the Taylor hypothesis in swirling flows , 1994 .
[46] Y. Ponty,et al. Dynamo Regimes with a Nonhelical Forcing , 2005 .
[47] Yu. B. Ponomarenko,et al. Theory of the hydromagnetic generator , 1973 .
[48] J. Guermond,et al. Impact of impellers on the axisymmetric magnetic mode in the VKS2 dynamo experiment. , 2008, Physical review letters.
[49] F. Stefani,et al. Ambivalent effects of added layers on steady kinematic dynamos in cylindrical geometry: application to the VKS experiment , 2006 .
[50] B. Dubrulle,et al. Properties of steady states in turbulent axisymmetric flows. , 2006, Physical review letters.
[51] L. Marié. Transport de moment cinétique et de champ magnétique par un écoulement tourbillonnaire turbulent : influence de la rotation , 2003 .
[52] Florent Ravelet. Bifurcations globales hydrodynamiques et magnetohydrodynamiques dans un ecoulement de von Karman turbulent , 2005 .
[53] A. Chiffaudel,et al. Toward an experimental von Kármán dynamo: Numerical studies for an optimized design , 2004, physics/0411213.
[54] S. Fauve,et al. Effect of magnetic boundary conditions on the dynamo threshold of von Kármán swirling flows , 2008, 0804.1923.
[55] Florent Ravelet,et al. Bistability between a stationary and an oscillatory dynamo in a turbulent flow of liquid sodium , 2009, Journal of Fluid Mechanics.
[56] Y. Couder,et al. Direct observation of the intermittency of intense vorticity filaments in turbulence. , 1991, Physical review letters.
[57] Perrin,et al. Competing instabilities in a rotating layer of mercury heated from below. , 1985, Physical review letters.
[58] R. W. James,et al. Time-dependent kinematic dynamos with stationary flows , 1989, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[59] J. Pinton,et al. Transport of magnetic field by a turbulent flow of liquid sodium. , 2006, Physical review letters.
[60] E. Parker. Hydromagnetic Dynamo Models , 1955 .
[61] J. Pinton,et al. An iterative study of time independent induction effects in magnetohydrodynamics , 2004 .
[62] B Dubrulle,et al. Influence of turbulence on the dynamo threshold. , 2006, Physical review letters.
[63] T Gundrum,et al. Magnetic field saturation in the Riga dynamo experiment. , 2001, Physical review letters.
[64] S. Fauve,et al. The Dynamo Effect , 2003 .
[65] Matthias Rheinhardt,et al. The Karlsruhe Dynamo Experiment. A Mean Field Approach , 1998 .
[66] Dynamics of polar reversals in spherical dynamos , 2003, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[67] S. Fauve,et al. Pressure fluctuations in swirling turbulent flows , 1993 .
[68] R Volk,et al. Generation of a magnetic field by dynamo action in a turbulent flow of liquid sodium. , 2007, Physical review letters.
[69] C. B. Forest,et al. Measurements of the magnetic field induced by a turbulent flow of liquid metal , 2006 .
[70] G. Hammett,et al. A model of nonlinear evolution and saturation of the turbulent MHD dynamo , 2002, astro-ph/0207503.
[71] Lathrop,et al. Toward a self-generating magnetic dynamo: the role of turbulence , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[72] M. Proctor,et al. A Heteroclinic model of geodynamo reversals and excursions , 2001 .
[73] Y. Ponty,et al. Numerical study of dynamo action at low magnetic Prandtl numbers. , 2004, Physical review letters.
[74] I. Wilkinson,et al. Geomagnetic Dynamo: A Laboratory Model , 1963, Nature.
[75] E. Ott,et al. Blowout bifurcations and the onset of magnetic activity in turbulent dynamos. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.
[76] Slow dynamics in a turbulent von Kármán swirling flow. , 2007, Physical review letters.
[77] J. Pinton,et al. Magnetohydrodynamics measurements in the von Kármán sodium experiment , 2002 .
[78] J. Pinton,et al. Induction, helicity, and alpha effect in a toroidal screw flow of liquid gallium. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.
[79] F. Plunian,et al. Influence of electromagnetic boundary conditions onto the onset of dynamo action in laboratory experiments. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.
[80] E. Knobloch,et al. A new model of the solar cycle , 1996 .
[81] J. Pinton,et al. ADVECTION OF A MAGNETIC FIELD BY A TURBULENT SWIRLING FLOW , 1998 .
[82] J. Pinton,et al. Chaotic dynamos generated by a turbulent flow of liquid sodium. , 2008, Physical review letters.
[83] J. Pinton,et al. An experimental Bullard–von Kármán dynamo , 2006 .
[84] G. Gerbeth,et al. The Riga Dynamo Experiment , 2003 .
[85] M. Brachet. Direct simulation of three-dimensional turbulence in the Taylor–Green vortex , 1991 .
[86] Florent Ravelet,et al. Multistability and memory effect in a highly turbulent flow: experimental evidence for a global bifurcation. , 2004, Physical review letters.
[87] F. Daviaud,et al. Galerkin analysis of kinematic dynamos in the von Kármán geometry , 2006 .
[88] Rehberg,et al. Experimental observation of a codimension-two bifurcation in a binary fluid mixture. , 1985, Physical review letters.
[89] B. Dubrulle,et al. Normalized kinetic energy as a hydrodynamical global quantity for inhomogeneous anisotropic turbulence , 2009 .
[90] J. Pinton,et al. Nonlinear magnetic induction by helical motion in a liquid sodium turbulent flow. , 2003, Physical review letters.
[91] J. Pinton,et al. Power Fluctuations in Turbulent Swirling Flows , 1996 .