X-ray reflection in a sample of X-ray bright ultraluminous X-ray sources

We apply a reflection-based model to the best available XMM-Newton spectra of X-ray bright ultraluminous X-ray sources (NGC 1313 X-1, NGC 1313 X-2, M 81 X-6, Holmberg IX X-1, NGC 5408 X-1 and Holmberg II X-1). A spectral drop is apparent in the data of all the sources at energies 6-7 keV. The drop is interpreted here in terms of relativistically blurred ionized reflection from the accretion disc. A soft excess is also detected from these sources [as usually found in the spectra of active galactic nuclei (AGN)], with emission from O K and Fe L, in the case of NGC 5408 X- 1 and Holmberg II X-1, which can be understood as features arising from reflection of the disc. Remarkably, ionized disc reflection and the associated power-law continuum provide a good description of the broad-band spectrum, including the soft excess. There is no requirement for thermal emission from the inner disc in the description of the spectra. The black holes of these systems must then be highly spinning, with a spin close to the maximum rate of a maximal spinning black hole. The results require the action of strong light bending in these sources. We suggest that they could be strongly accreting black holes in which most of the energy is extracted from the flow magnetically and released above the disc thereby avoiding the conventional Eddington limit.

[1]  A. Fabian,et al.  A comprehensive range of X-ray ionized-reflection models , 2005 .

[2]  A. Fabian,et al.  Determining the spin of two stellar‐mass black holes from disc reflection signatures , 2009, 0902.1745.

[3]  A. C. Fabian,et al.  Revealing a cool accretion disk in the ultraluminous X-ray source M81 X-9 (Holmberg IX X-1): Evidence for an intermediate-mass black hole , 2004 .

[4]  M. W. Pakull,et al.  BUBBLE NEBULAE AROUND ULTRALUMINOUS X-RAY SOURCES , 2003 .

[5]  Aya Kubota,et al.  The Nature of Ultraluminous Compact X-Ray Sources in Nearby Spiral Galaxies , 2000, astro-ph/0001009.

[6]  P. Crowther,et al.  A survey of the Wolf–Rayet population of the barred, spiral galaxy NGC 1313 , 2007, 0708.2039.

[7]  Philip Kaaret,et al.  XMM-Newton Observations of Ultraluminous X-Ray Sources in Nearby Galaxies , 2005, astro-ph/0507562.

[8]  P. Kaaret,et al.  High-resolution imaging of the He II λ4686 emission line nebula associated with the ultraluminous X-ray source in Holmberg II , 2004, astro-ph/0407031.

[9]  Carlos E. C. J. Gabriel,et al.  Astronomical Data Analysis Software and Systems Xv , 2022 .

[10]  T. P. Roberts,et al.  X-ray observations of ultraluminous X-ray sources , 2007, 0706.2562.

[11]  Aya Kubota,et al.  The very high state accretion disc structure from the Galactic black hole transient XTE J1550 – 564 , 2003 .

[12]  A. Laor Line Profiles from a Disk around a Rotating Black Hole , 1991 .

[13]  L. Brenneman,et al.  Constraining Black Hole Spin via X-Ray Spectroscopy , 2006, astro-ph/0608502.

[14]  Andrew C. Fabian,et al.  X-ray reflection from cold matter in Active Galactic Nuclei and X-ray binaries , 1991 .

[15]  G. Miniutti,et al.  Broad line emission from iron K- and L-shell transitions in the active galaxy 1H 0707-495 , 2009, Nature.

[16]  Martin J. Rees,et al.  ‘Cold’ material in non-thermal sources , 1988 .

[17]  Manfred W. Pakull,et al.  Optical Counterparts of Ultraluminous X-Ray Sources , 2002, astro-ph/0202488.

[18]  H. Bethe,et al.  A theory of gamma-ray bursts , 2000, astro-ph/0003361.

[19]  T. P. Roberts,et al.  The Ultraluminous State , 2009, 0905.4076.

[20]  Spectroscopy of optical counterparts of ultraluminous X-ray sources , 2006, astro-ph/0612765.

[21]  G. Miniutti,et al.  A light bending model for the X-ray temporal and spectral properties of accreting black holes , 2004 .

[22]  B. Paczyński Are Gamma-Ray Bursts in Star-Forming Regions? , 1997, astro-ph/9710086.

[23]  Giuseppina Fabbiano,et al.  X Rays From Normal Galaxies , 1989 .

[24]  M. Cropper,et al.  Quasi-periodic Variability in NGC 5408 X-1 , 2007, astro-ph/0701390.

[25]  R. S. Warwick,et al.  XMM–Newton EPIC observations of the ultraluminous X‐ray source NGC 5204 X‐1 , 2004 .

[26]  Chris Biemesderfer,et al.  Astronomical Data Analysis Software and Systems X , 2001 .

[27]  J. M. Miller,et al.  Relativistic X-Ray Lines from the Inner Accretion Disks Around Black Holes , 2007, 0705.0540.

[28]  A. Fabian,et al.  Relativistically broadened iron line in the Suzaku observation of the neutron star X-ray binary 4U 1705−44 , 2009, 0904.2747.

[29]  T. Tsuru,et al.  Suzaku Observations of M 82 X-1 : Detection of a Curved Hard X-Ray Spectrum , 2008, 0809.3339.

[30]  A. R. King,et al.  Blunting the spike: the cataclysmic variable minimum period , 2002 .

[31]  R. Fender,et al.  An ultraluminous X-ray microquasar in NGC 5408? , 2006 .

[32]  N. White,et al.  Compact Stellar X-Ray Sources: Compact steller X-ray sources in normal galaxies , 2003 .

[33]  Tod E. Strohmayer,et al.  Relativistic Iron Emission Lines in Neutron Star Low-Mass X-Ray Binaries as Probes of Neutron Star Radii , 2007, 0708.3615.

[34]  G. F. White Compact Stellar X-ray Sources in Normal Galaxies , 2003, astro-ph/0307077.

[35]  M. Colpi,et al.  Low metallicity and ultra-luminous X-ray sources in the Cartwheel galaxy , 2009, 0902.3540.

[36]  Richard F. Mushotzky,et al.  Elemental Abundances of Nearby Galaxies through High Signal-to-Noise Ratio XMM-Newton Observations of Ultraluminous X-Ray Sources , 2006, astro-ph/0610369.

[37]  J. N. Reeves,et al.  An XMM–Newton survey of broad iron lines in Seyfert galaxies , 2007, 0708.1305.

[38]  V. Kalogera,et al.  Theoretical Black Hole Mass Distributions , 1999, astro-ph/9911312.

[39]  R. E. Griffiths,et al.  Quasi-periodic Oscillations and Strongly Comptonized X-Ray Emission from Holmberg IX X-1 , 2006, astro-ph/0602472.

[40]  Mass Limits For Black Hole Formation , 1999, astro-ph/9902315.

[41]  E. Colbert,et al.  Intermediate - mass black holes , 2003 .

[42]  J. M. Miller,et al.  X-Ray Spectroscopic Evidence for Intermediate-Mass Black Holes: Cool Accretion Disks in Two Ultraluminous X-Ray Sources , 2003 .

[43]  K. Yamaoka,et al.  GRS 1915+105 IN “SOFT STATE”: NATURE OF ACCRETION DISK WIND AND ORIGIN OF X-RAY EMISSION , 2009, 0901.1982.

[44]  P. S. Bunclark,et al.  Astronomical Data Analysis Software and Systems , 2008 .

[45]  H. Kunieda,et al.  Gravitationally redshifted emission implying an accretion disk and massive black hole in the active galaxy MCG–6–30–15 , 1995, Nature.

[46]  R. Blandford,et al.  Electromagnetic extraction of energy from Kerr black holes , 1977 .

[47]  J. Dickey,et al.  H I in the Galaxy , 1990 .

[48]  Jifeng Liu,et al.  An Ultraluminous Supersoft X-Ray Source in M81: An Intermediate-Mass Black Hole? , 2008, 0802.0507.

[49]  J. N. Reeves,et al.  A deep XMM-Newton observation of the ultraluminous X-ray source HoII X-1 : the case against a 1000 solar mass black hole , 2005 .

[50]  T. P. Roberts,et al.  XMM–Newton observations of the brightest ultraluminous X-ray sources , 2006, astro-ph/0601651.

[51]  Puragra Guhathakurta,et al.  New distances to galaxies in the Centaurus A group , 2002 .

[52]  Xiang-Dong Li,et al.  A Fallback Disk Model for Ultraluminous X-Ray Sources , 2003, astro-ph/0309321.

[53]  Ronald A. Remillard,et al.  X-Ray Properties of Black-Hole Binaries , 2006, astro-ph/0606352.