Density functional theory model for calculating pore size distributions: pore structure of nanoporous catalysts

[1]  J. Weitkamp Zeolites: A Refined Tool for Designing Catalytic Sites , 1999 .

[2]  A. Neimark,et al.  Calibration of Pore Volume in Adsorption Experiments and Theoretical Models , 1997 .

[3]  N. Seaton,et al.  A Self-Consistent Method for Characterization of Activated Carbons Using Supercritical Adsorption and Grand Canonical Monte Carlo Simulations , 1997 .

[4]  Vladimir Yu. Gusev and,et al.  Can Molecular Simulations Be Used To Predict Adsorption on Activated Carbons , 1997 .

[5]  A. Neimark,et al.  Evaluation of Pore Structure Parameters of MCM-41 Catalyst Supports and Catalysts by Means of Nitrogen and Argon Adsorption , 1997 .

[6]  M. Jaroniec,et al.  Structural and surface properties of siliceous and titanium-modified HMS molecular sieves , 1997 .

[7]  J. P. Olivier,et al.  Characterization of MCM-41 Using Molecular Simulation: Heterogeneity Effects , 1997 .

[8]  Shiono,et al.  Analysis of Nitrogen Adsorption Isotherms for a Series of Porous Silicas with Uniform and Cylindrical Pores: A New Method of Calculating Pore Size Distribution of Pore Radius 1-2 nm , 1997, Journal of colloid and interface science.

[9]  M. Jaroniec,et al.  Adsorption Study of Surface and Structural Properties of MCM-41 Materials of Different Pore Sizes , 1997 .

[10]  J. Klinowski,et al.  Controlling the channel diameter of the mesoporous molecular sieve MCM-41 , 1997 .

[11]  Huaiyong Zhu,et al.  Improved Comparison Plot Method for Pore Structure Characterization of MCM-41 , 1996 .

[12]  Y. Sakamoto,et al.  Pore wall of a mesoporous molecular sieve derived from kanemite , 1996 .

[13]  Thomas J. Pinnavaia,et al.  Mesoporous silica molecular sieves prepared by ionic and neutral surfactant templating : A comparison of physical properties , 1996 .

[14]  C. Brinker,et al.  Template-Based Approaches to the Preparation of Amorphous, Nanoporous Silicas , 1996 .

[15]  C. Martin,et al.  Thermodynamic and structural properties of physisorbed phases within the model mesoporous adsorbent M41S (pore diameter 2.5 nm) , 1996 .

[16]  M. Douglas LeVan,et al.  Fundamentals of Adsorption , 1996 .

[17]  N. Quirke,et al.  The interpretation of pore size distributions of microporous carbons , 1996 .

[18]  Seong Ihl Woo,et al.  Recent advances and new horizons in zeolite science and technology , 1996 .

[19]  F. Rey,et al.  Heterogeneous catalysts obtained by grafting metallocene complexes onto mesoporous silica , 1995, Nature.

[20]  A. Neimark The Method of Indeterminate Lagrange Multipliers in Nonlocal Density Functional Theory , 1995 .

[21]  A. Corma,et al.  Synthesis, Characterization, and Catalytic Activity of Ti-MCM-41 Structures , 1995 .

[22]  Q. Huo,et al.  Mesostructure Design with Gemini Surfactants: Supercage Formation in a Three-Dimensional Hexagonal Array , 1995, Science.

[23]  Mark E. Davis,et al.  Studies on ordered mesoporous materials III. Comparison of MCM-41 to mesoporous materials derived from kanemite , 1995 .

[24]  P. Tanev,et al.  A Neutral Templating Route to Mesoporous Molecular Sieves , 1995, Science.

[25]  K. Sing,et al.  Adsorption of carbon dioxide, sulfur dioxide and water vapour by MCM-41, a model mesoporous adsorbent , 1995 .

[26]  D. Akporiaye,et al.  MCM-41: a model system for adsorption studies on mesoporous materials , 1995 .

[27]  R. Cracknell,et al.  Modeling Fluid Behavior in Well-Characterized Porous Materials , 1995 .

[28]  A. Zukal,et al.  Adsorption on MCM-41 mesoporous molecular sieves. Part 2.—Cyclopentane isotherms and their temperature dependence , 1995 .

[29]  A. Neimark,et al.  Capillary Hysteresis in Nanopores: Theoretical and Experimental Studies of Nitrogen Adsorption on MCM-41 , 1995 .

[30]  H. C. Foley,et al.  Argon porosimetry of selected molecular sieves: experiments and examination of the adapted Horvath-Kawazoe model , 1995 .

[31]  S. Kaliaguine,et al.  Zeolites : a refined tool for designing catalytic sites : proceedings of the International Zeolite Symposium, Québec, Canada, October, 15-20, 1995 , 1995 .

[32]  J. S. Beck,et al.  Effect of surfactant/silica molar ratios on the formation of mesoporous molecular sieves : inorganic mimicry of surfactant liquid-crystal phases and mechanistic implications , 1994 .

[33]  K. Gubbins,et al.  Molecular simulation of fluid adsorption in buckytubes and MCM-41 , 1994 .

[34]  A. Patrykiejew,et al.  Liquid films on heterogeneous surfaces: a density functional approach , 1994 .

[35]  Q. Huo,et al.  Organization of Organic Molecules with Inorganic Molecular Species into Nanocomposite Biphase Arrays , 1994 .

[36]  A. Corma,et al.  Acidity and Stability of MCM-41 Crystalline Aluminosilicates , 1994 .

[37]  Douglas M. Smith,et al.  Characterization of Porous Solids , 1994 .

[38]  J. B. Higgins,et al.  Model Structures for MCM-41 Materials: A Molecular Dynamics Simulation , 1994 .

[39]  P. Tanev,et al.  Titanium-containing mesoporous molecular sieves for catalytic oxidation of aromatic compounds , 1994, Nature.

[40]  K. Gubbins,et al.  Theory of Adsorption of Trace Components , 1994 .

[41]  K. Sing,et al.  Physisorption of argon, nitrogen and oxygen by MCM-41, a model mesoporous adsorbent , 1994 .

[42]  Adsorption on MCM-41 mesoporous molecular sieves. Part 1.—Nitrogen isotherms and parameters of the porous structure , 1994 .

[43]  Mark E. Davis,et al.  Studies on mesoporous materialsI. Synthesis and characterization of MCM-41 , 1993 .

[44]  K. Gubbins,et al.  Pore size heterogeneity and the carbon slit pore: a density functional theory model , 1993 .

[45]  Q. Huo,et al.  Cooperative Formation of Inorganic-Organic Interfaces in the Synthesis of Silicate Mesostructures , 1993, Science.

[46]  K. Gubbins,et al.  Theoretical interpretation of adsorption behavior of simple fluids in slit pores , 1993 .

[47]  K. Gubbins,et al.  Pore size distribution analysis of microporous carbons: a density functional theory approach , 1993 .

[48]  J. Fischer,et al.  'Liquid-vapour' density profiles for fluids in pores from density functional theory , 1993 .

[49]  J. B. Higgins,et al.  A new family of mesoporous molecular sieves prepared with liquid crystal templates , 1992 .

[50]  J. S. Beck,et al.  Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism , 1992, Nature.

[51]  K. Gubbins,et al.  Classification of adsorption behavior: simple fluids in pores of slit-shaped geometry , 1992 .

[52]  K. Gubbins,et al.  Selective adsorption of simple mixtures in slit pores: a model of methane-ethane mixtures in carbon , 1992 .

[53]  S. Sokołowski,et al.  Monolayer adsorption on heterogeneous solid surfaces: a density functional approach , 1992 .

[54]  N. Quirke,et al.  Methane adsorption on microporous carbons—A comparison of experiment, theory, and simulation , 1992 .

[55]  D. Henderson Fundamentals of Inhomogeneous Fluids , 1992 .

[56]  H. C. Foley,et al.  Curvature and parametric sensitivity in models for adsorption in micropores , 1991 .

[57]  K. Gubbins,et al.  Layering transitions in cylindrical pores , 1990 .

[58]  R. Evans,et al.  Temperature dependence of gas adsorption on a mesoporous solid: capillary criticality and hysteresis , 1989 .

[59]  L. E. Scriven,et al.  Molecular theories of confined fluids , 1989 .

[60]  N. Seaton,et al.  A new analysis method for the determination of the pore size distribution of porous carbons from nitrogen adsorption measurements , 1989 .

[61]  K. Gubbins,et al.  Adsorption hysteresis in narrow pores , 1988 .

[62]  R. Evans,et al.  Structure and adsorption at gas–solid interfaces: Layering transitions from a continuum theory , 1988 .

[63]  J. Mann,et al.  Molecule-micropore interaction potentials , 1988 .

[64]  K. Gubbins,et al.  Lennard‐Jones fluids in cylindrical pores: Nonlocal theory and computer simulation , 1988 .

[65]  K. Gubbins,et al.  Phase transitions in a cylindrical pore , 1987 .

[66]  P. Tarazona,et al.  Phase equilibria of fluid interfaces and confined fluids , 1987 .

[67]  M. T. D. Gama,et al.  The form of the density profile at a liquid-gas interface , 1985 .

[68]  P. Tarazona,et al.  Free-energy density functional for hard spheres. , 1985, Physical review. A, General physics.

[69]  K. Gubbins,et al.  The vapour-liquid interface for a Lennard-Jones model of argon-krypton mixtures , 1984 .

[70]  P. Tarazona,et al.  A density functional theory of melting , 1984 .

[71]  K. Kawazoe,et al.  METHOD FOR THE CALCULATION OF EFFECTIVE PORE SIZE DISTRIBUTION IN MOLECULAR SIEVE CARBON , 1983 .

[72]  D. E. Sullivan Van der Waals model of adsorption , 1979 .

[73]  I. R. Mcdonald,et al.  Theory of simple liquids , 1998 .

[74]  H. C. Andersen,et al.  Role of Repulsive Forces in Determining the Equilibrium Structure of Simple Liquids , 1971 .

[75]  K. E. Starling,et al.  Equation of State for Nonattracting Rigid Spheres , 1969 .

[76]  S. J. Gregg,et al.  Adsorption Surface Area and Porosity , 1967 .

[77]  E. Alison Flood,et al.  The solid-gas interface, , 1967 .

[78]  J. H. de Boer,et al.  Studies on pore systems in catalysts: VI. The universal t curve , 1965 .

[79]  E. Barrett,et al.  (CONTRIBUTION FROM THE MULTIPLE FELLOWSHIP OF BAUGH AND SONS COMPANY, MELLOX INSTITUTE) The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms , 1951 .