Ion Dynamics and the Shock Profile of a Low‐Mach Number Shock
暂无分享,去创建一个
C. Russell | M. Gedalin | A. Drozdov | T. Liu | Xiaoyan Zhou
[1] M. Gedalin. Effect of alpha particles on the shock structure , 2017 .
[2] M. Gedalin. Transmitted, reflected, quasi‐reflected, and multiply reflected ions in low‐Mach number shocks , 2016 .
[3] X. Blanco‐Cano,et al. Interplanetary shocks and foreshocks observed by STEREO during 2007–2010 , 2016 .
[4] M. Gedalin. Collisionless relaxation of non-gyrotropic downstream ion distributions: dependence on shock parameters , 2015 .
[5] M. Balikhin,et al. Collisionless relaxation of downstream ion distributions in low-Mach number shocks , 2015 .
[6] C. Russell,et al. STEREO interplanetary shocks and foreshocks , 2013 .
[7] M. Gedalin,et al. Two‐dimensional hybrid simulations of quasi‐perpendicular collisionless shock dynamics: Gyrating downstream ion distributions , 2013 .
[8] C. Russell,et al. Waves upstream and downstream of interplanetary shocks driven by coronal mass ejections , 2012 .
[9] Vassilis Angelopoulos,et al. The ARTEMIS Mission , 2011 .
[10] K. Meziane,et al. Low‐frequency whistler waves and shocklets observed at quasi‐perpendicular interplanetary shocks , 2009 .
[11] C. Russell,et al. Collisionless relaxation of ion distributions downstream of laminar quasi-perpendicular shocks , 2009 .
[12] X. Blanco‐Cano,et al. STEREO observations of upstream and downstream waves at low Mach number shocks , 2009 .
[13] R. Abiad,et al. The THEMIS ESA Plasma Instrument and In-flight Calibration , 2008 .
[14] V. Angelopoulos,et al. THEMIS ESA First Science Results and Performance Issues , 2008 .
[15] Vassilis Angelopoulos,et al. The THEMIS Mission , 2008 .
[16] M. Balikhin,et al. Venus Express observes a new type of shock with pure kinematic relaxation , 2008 .
[17] J. Kasper,et al. Waves in interplanetary shocks: a wind/WAVES study. , 2007, Physical review letters.
[18] R. Fonseca,et al. dHybrid: A massively parallel code for hybrid simulations of space plasmas , 2006, Comput. Phys. Commun..
[19] M. Balikhin,et al. Electric potential in the low‐Mach‐number quasi‐perpendicular collisionless shock ramp revisited , 2004 .
[20] S. Schwartz. Shock and Discontinuity Normals, Mach Numbers, and Related Parameters , 1998 .
[21] R. Treumann,et al. Characteristics of the ion pressure tensor in the Earth's magnetosheath , 1995 .
[22] C. Russell,et al. Magnetic structure of the low beta, quasi‐perpendicular shock , 1993 .
[23] H. Lühr,et al. Ion thermalization in quasi-perpendicular shocks involving reflected ions , 1990 .
[24] S. Schwartz,et al. Ion distributions and thermalization at perpendicular and quasi‐perpendicular supercritical collisionless shocks , 1989 .
[25] Michelle F. Thomsen,et al. Electron heating and the potential jump across fast mode shocks. [in interplanetary space , 1988 .
[26] C. Russell,et al. The resolved layer of a collisionless, high β, supercritical, quasi‐perpendicular shock wave: 1. Rankine‐Hugoniot geometry, currents, and stationarity , 1986 .
[27] J. Scudder,et al. Fast and optimal solution to the 'Rankine-Hugoniot problem'. [for geometrical shock wave properties, conservation constants and self-consistent asymptotic magnetofluid variables of interplanetary medium] , 1986 .
[28] C. Goodrich,et al. The adiabatic energy change of plasma electrons and the frame dependence of the cross‐shock potential at collisionless magnetosonic shock waves , 1984 .
[29] E. Greenstadt,et al. The structure of oblique subcritical bow shocks: ISEE 1 and 2 observations , 1984 .
[30] M. Leroy. Structure of perpendicular shocks in collisionless plasma , 1983 .
[31] C. Russell,et al. Evolution of ion distributions across the nearly perpendicular bow shock: Specularly and non‐specularly reflected‐gyrating ions , 1983 .
[32] W. Feldman,et al. Evidence for specularly reflected ions upstream from the quasi‐parallel bow shock , 1982 .
[33] C. Russell,et al. ISEE‐1 and ‐2 observations of laminar bow shocks: Velocity and thickness , 1982 .
[34] Charles C. Goodrich,et al. The structure of perpendicular bow shocks , 1982 .
[35] C. Russell,et al. A macroscopic profile of the typical quasi-perpendicular bow shock - Isee 1 and 2 , 1980 .
[36] C. Russell,et al. Structure of the quasi-perpendicular laminar bow shock. [earth-solar wind interaction , 1975 .
[37] L. C. Woods. On double-structured, perpendicular, magneto-plasma shock waves , 1971 .
[38] L. C. Woods,et al. On the structure of collisionless magneto—plasma shock waves at super—critical Alfvén—Mach numbers , 1969, Journal of Plasma Physics.