Ion Dynamics and the Shock Profile of a Low‐Mach Number Shock

The directly measured magnetic field fluctuates even at low‐Mach number shocks. Separation of the essential shock profile from features superimposed onto it is one of the basic problems of shock physics. The essential structure is one which affects the ion motion and is shaped by the produced ion distributions: the macroscopic fields which are built self‐consistently and together with the ion dynamics. The advanced test particle analysis is used to derive the magnetic profile which is consistent with the collisionless ion motion in the macroscopic fields of the shock front. The downstream side of the derived profile is in good agreement with the observed profile of a low‐Mach number interplanetary shock. The analysis allows us to improve the determination of the Mach number and provides an approximate value of the cross‐shock potential, which is not measured. It is shown that α‐particles cause nonperiodicity of the downstream magnetic oscillations. The performed hybrid simulations support the conclusion that the macroscopic fields of the shock play the main role in the formation of downstream ion distributions. The role of fluctuations is to enhance smoothing of the distributions and speed up relaxation to gyrotropy. The measured ion distributions well agree with the theoretically predicted onset of the anisotropy at the shock crossing and its persistence well into the downstream region.

[1]  M. Gedalin Effect of alpha particles on the shock structure , 2017 .

[2]  M. Gedalin Transmitted, reflected, quasi‐reflected, and multiply reflected ions in low‐Mach number shocks , 2016 .

[3]  X. Blanco‐Cano,et al.  Interplanetary shocks and foreshocks observed by STEREO during 2007–2010 , 2016 .

[4]  M. Gedalin Collisionless relaxation of non-gyrotropic downstream ion distributions: dependence on shock parameters , 2015 .

[5]  M. Balikhin,et al.  Collisionless relaxation of downstream ion distributions in low-Mach number shocks , 2015 .

[6]  C. Russell,et al.  STEREO interplanetary shocks and foreshocks , 2013 .

[7]  M. Gedalin,et al.  Two‐dimensional hybrid simulations of quasi‐perpendicular collisionless shock dynamics: Gyrating downstream ion distributions , 2013 .

[8]  C. Russell,et al.  Waves upstream and downstream of interplanetary shocks driven by coronal mass ejections , 2012 .

[9]  Vassilis Angelopoulos,et al.  The ARTEMIS Mission , 2011 .

[10]  K. Meziane,et al.  Low‐frequency whistler waves and shocklets observed at quasi‐perpendicular interplanetary shocks , 2009 .

[11]  C. Russell,et al.  Collisionless relaxation of ion distributions downstream of laminar quasi-perpendicular shocks , 2009 .

[12]  X. Blanco‐Cano,et al.  STEREO observations of upstream and downstream waves at low Mach number shocks , 2009 .

[13]  R. Abiad,et al.  The THEMIS ESA Plasma Instrument and In-flight Calibration , 2008 .

[14]  V. Angelopoulos,et al.  THEMIS ESA First Science Results and Performance Issues , 2008 .

[15]  Vassilis Angelopoulos,et al.  The THEMIS Mission , 2008 .

[16]  M. Balikhin,et al.  Venus Express observes a new type of shock with pure kinematic relaxation , 2008 .

[17]  J. Kasper,et al.  Waves in interplanetary shocks: a wind/WAVES study. , 2007, Physical review letters.

[18]  R. Fonseca,et al.  dHybrid: A massively parallel code for hybrid simulations of space plasmas , 2006, Comput. Phys. Commun..

[19]  M. Balikhin,et al.  Electric potential in the low‐Mach‐number quasi‐perpendicular collisionless shock ramp revisited , 2004 .

[20]  S. Schwartz Shock and Discontinuity Normals, Mach Numbers, and Related Parameters , 1998 .

[21]  R. Treumann,et al.  Characteristics of the ion pressure tensor in the Earth's magnetosheath , 1995 .

[22]  C. Russell,et al.  Magnetic structure of the low beta, quasi‐perpendicular shock , 1993 .

[23]  H. Lühr,et al.  Ion thermalization in quasi-perpendicular shocks involving reflected ions , 1990 .

[24]  S. Schwartz,et al.  Ion distributions and thermalization at perpendicular and quasi‐perpendicular supercritical collisionless shocks , 1989 .

[25]  Michelle F. Thomsen,et al.  Electron heating and the potential jump across fast mode shocks. [in interplanetary space , 1988 .

[26]  C. Russell,et al.  The resolved layer of a collisionless, high β, supercritical, quasi‐perpendicular shock wave: 1. Rankine‐Hugoniot geometry, currents, and stationarity , 1986 .

[27]  J. Scudder,et al.  Fast and optimal solution to the 'Rankine-Hugoniot problem'. [for geometrical shock wave properties, conservation constants and self-consistent asymptotic magnetofluid variables of interplanetary medium] , 1986 .

[28]  C. Goodrich,et al.  The adiabatic energy change of plasma electrons and the frame dependence of the cross‐shock potential at collisionless magnetosonic shock waves , 1984 .

[29]  E. Greenstadt,et al.  The structure of oblique subcritical bow shocks: ISEE 1 and 2 observations , 1984 .

[30]  M. Leroy Structure of perpendicular shocks in collisionless plasma , 1983 .

[31]  C. Russell,et al.  Evolution of ion distributions across the nearly perpendicular bow shock: Specularly and non‐specularly reflected‐gyrating ions , 1983 .

[32]  W. Feldman,et al.  Evidence for specularly reflected ions upstream from the quasi‐parallel bow shock , 1982 .

[33]  C. Russell,et al.  ISEE‐1 and ‐2 observations of laminar bow shocks: Velocity and thickness , 1982 .

[34]  Charles C. Goodrich,et al.  The structure of perpendicular bow shocks , 1982 .

[35]  C. Russell,et al.  A macroscopic profile of the typical quasi-perpendicular bow shock - Isee 1 and 2 , 1980 .

[36]  C. Russell,et al.  Structure of the quasi-perpendicular laminar bow shock. [earth-solar wind interaction , 1975 .

[37]  L. C. Woods On double-structured, perpendicular, magneto-plasma shock waves , 1971 .

[38]  L. C. Woods,et al.  On the structure of collisionless magneto—plasma shock waves at super—critical Alfvén—Mach numbers , 1969, Journal of Plasma Physics.