Stabilization of Unstable Fixed Points of Chaotic Fractional Order Systems by a State Fractional PI Controller

This paper presents a new method to control chaos in fractional order systems based on the fractional control theory. The proposed controller is a fractional PI (PI α ) controller and can locally stabilize unstable equilibrium points of a class of chaotic fractional order systems. Using the ideas available in the chaos control methods such as Ott-Grebogi-Yorke (OGY), this local stabilization can be extended to the global stabilization. The controller has simple structure and its parameters can be determined by pole placement technique. To illustrate its capability, the proposed controller is applied to control chaos in the fractional order unified system. Numerical simulations confirm the ability of the controller to reject external constant disturbances as well as its robustness against the variation of system parameters.

[1]  Alain Oustaloup,et al.  From fractal robustness to the CRONE control , 1999 .

[2]  Julien Clinton Sprott,et al.  Chaos in fractional-order autonomous nonlinear systems , 2003 .

[3]  P. Arena,et al.  Bifurcation and Chaos in Noninteger Order Cellular Neural Networks , 1998 .

[4]  A. Oustaloup,et al.  Fractional Differentiation in Passive Vibration Control , 2002 .

[5]  D. Matignon Stability properties for generalized fractional differential systems , 1998 .

[6]  S. Manabe A Suggestion of Fractional-Order Controller for Flexible Spacecraft Attitude Control , 2002 .

[7]  I. Podlubny Fractional differential equations , 1998 .

[8]  J. Partington,et al.  Coprime factorizations and stability of fractional differential systems , 2000 .

[9]  Xavier Moreau,et al.  The CRONE Suspension , 1996 .

[10]  Reyad El-Khazali,et al.  Stabilization of generalized fractional order chaotic systems using state feedback control , 2004 .

[11]  Jun-Guo Lu,et al.  Chaotic dynamics and synchronization of fractional-order Arneodo’s systems , 2005 .

[12]  Mohammad Saleh Tavazoei,et al.  Chaos control via a simple fractional-order controller , 2008 .

[13]  M. Lazarevic Finite time stability analysis of PDα fractional control of robotic time-delay systems , 2006 .

[14]  D. Matignon,et al.  Some Results on Controllability and Observability of Finite-dimensional Fractional Differential Systems , 1996 .

[15]  Henrikus J. C. Huijberts,et al.  Linear Controllers for the Stabilization of Unknown Steady States of Chaotic Systems , 2006, IEEE Transactions on Circuits and Systems I: Regular Papers.

[16]  Vicente Feliu-Batlle,et al.  Fractional robust control of main irrigation canals with variable dynamic parameters , 2007 .

[17]  Jinhu Lu,et al.  A New Chaotic Attractor Coined , 2002, Int. J. Bifurc. Chaos.

[18]  Yangquan Chen,et al.  Using Fractional Calculus for Lateral and Longitudinal Conrol of Autonomous Vehicles , 2003, EUROCAST.

[19]  卢俊国,et al.  Chaotic dynamics of the fractional-order Ikeda delay system and its synchronization , 2006 .

[20]  Shangbo Zhou,et al.  Chaos control and synchronization in a fractional neuron network system , 2008 .

[21]  Jinhu Lü,et al.  Stability analysis of linear fractional differential system with multiple time delays , 2007 .

[22]  Igor Podlubny,et al.  Fractional-order systems and PI/sup /spl lambda//D/sup /spl mu//-controllers , 1999 .

[23]  Ivo Petras,et al.  A note on the fractional-order Chua’s system , 2008 .

[24]  Weihua Deng,et al.  Design of Multi-Directional Multi-Scroll Chaotic Attractors Based on Fractional Differential Systems , 2007, 2007 IEEE International Symposium on Circuits and Systems.

[25]  Changpin Li,et al.  Chaos in Chen's system with a fractional order , 2004 .

[26]  Changchun Hua,et al.  Synchronization of chaotic systems based on PI observer design , 2005 .

[27]  Wei Lin Global existence theory and chaos control of fractional differential equations , 2007 .

[28]  Chunguang Li,et al.  Chaos and hyperchaos in the fractional-order Rössler equations , 2004 .

[29]  Vicente Feliú Batlle,et al.  Fractional order control strategies for power electronic buck converters , 2006, Signal Process..

[30]  A. J. Calderón,et al.  On Fractional PIλ Controllers: Some Tuning Rules for Robustness to Plant Uncertainties , 2004 .

[31]  Ying-Cheng Lai,et al.  Controlling chaos , 1994 .

[32]  Alain Oustaloup,et al.  Robust Speed Control of a Low Damped Electromechanical System Based on CRONE Control: Application to a Four Mass Experimental Test Bench , 2004 .

[33]  Carlo Piccardi,et al.  PID control of a chaotic system: An application to an epidemiological model , 1997, Autom..

[34]  Yong He,et al.  Multivariable PD controller design for fast chaos synchronization of Lur'e systems , 2007 .

[35]  A. J. Calderón,et al.  The fractional order lead compensator , 2004, Second IEEE International Conference on Computational Cybernetics, 2004. ICCC 2004..

[36]  Alexander L. Fradkov,et al.  Control of Chaos: Methods and Applications. I. Methods , 2003 .

[37]  D. Matignon Stability results for fractional differential equations with applications to control processing , 1996 .

[38]  Alain Oustaloup,et al.  The CRONE Control of Resonant Plants: Application to a Flexible Transmission , 1995, Eur. J. Control.

[39]  Yangquan Chen,et al.  Robust controllability of interval fractional order linear time invariant systems , 2006, Signal Process..

[40]  Pu Han,et al.  A kind of multivariable PID design method for chaos system - using H/sub /spl infin// loop shaping design procedure , 2004, Proceedings of 2004 International Conference on Machine Learning and Cybernetics (IEEE Cat. No.04EX826).

[41]  Serdar Ethem Hamamci Stabilization using fractional-order PI and PID controllers , 2007 .

[42]  Yuan Kang,et al.  Chaos in the Newton–Leipnik system with fractional order , 2008 .

[43]  Alexander L. Fradkov,et al.  Control of Chaos : Methods and Applications , 2003 .

[44]  B. Anderson,et al.  Optimal control: linear quadratic methods , 1990 .

[45]  Weihua Deng,et al.  Generating multi-directional multi-scroll chaotic attractors via a fractional differential hysteresis system , 2007 .

[46]  Hsin-Chieh Chen,et al.  EP-based PID control design for chaotic synchronization with application in secure communication , 2008, Expert Syst. Appl..

[47]  C. F. Lorenzo,et al.  Chaos in a fractional order Chua's system , 1995 .

[48]  E. Ahmed,et al.  Equilibrium points, stability and numerical solutions of fractional-order predator–prey and rabies models , 2007 .

[49]  Leang-San Shieh,et al.  State-Space Self-Tuning Control for Stochastic Fractional-Order Chaotic Systems , 2007, IEEE Transactions on Circuits and Systems I: Regular Papers.

[50]  Anissa Zergaïnoh-Mokraoui,et al.  State-space representation for fractional order controllers , 2000, Autom..

[51]  N. Ford,et al.  A Predictor-Corrector Approach for the Numerical Solution of Fractional Differential Equations , 2013 .

[52]  M. Haeri,et al.  Unreliability of frequency-domain approximation in recognising chaos in fractional-order systems , 2007 .

[53]  I. Podlubny Fractional-order systems and PIλDμ-controllers , 1999, IEEE Trans. Autom. Control..

[54]  Weihua Deng,et al.  The evolution of chaotic dynamics for fractional unified system , 2008 .

[55]  Xinghuo Yu,et al.  Chaos control : theory and applications , 2003 .

[56]  Mohammad Saleh Tavazoei,et al.  A necessary condition for double scroll attractor existence in fractional-order systems , 2007 .

[57]  Guo-Ping Jiang,et al.  Stabilizing unstable equilibrium points of a class of chaotic systems using a state PI regulator , 2002 .

[58]  Guanrong Chen,et al.  Generating Multiscroll Chaotic Attractors: Theories, Methods and Applications , 2006 .

[59]  P. Lino,et al.  New tuning rules for fractional PIα controllers , 2007 .

[60]  António M. Lopes,et al.  Fractional Order Control of a Hexapod Robot , 2004 .

[61]  R. Hilfer Applications Of Fractional Calculus In Physics , 2000 .

[62]  Daizhan Cheng,et al.  Bridge the Gap between the Lorenz System and the Chen System , 2002, Int. J. Bifurc. Chaos.

[63]  Chunguang Li,et al.  Chaos in the fractional order Chen system and its control , 2004 .

[64]  Junwei Wang,et al.  Designing synchronization schemes for chaotic fractional-order unified systems , 2006 .

[65]  Elena Grigorenko,et al.  Chaotic dynamics of the fractional Lorenz system. , 2003, Physical review letters.