Unsupervised clustering on dynamic databases
暂无分享,去创建一个
[1] Graham K. Rand,et al. Quantitative Applications in the Social Sciences , 1983 .
[2] Hans-Peter Kriegel,et al. OPTICS: ordering points to identify the clustering structure , 1999, SIGMOD '99.
[3] Maurice K. Wong,et al. Algorithm AS136: A k-means clustering algorithm. , 1979 .
[4] P. Sopp. Cluster analysis. , 1996, Veterinary immunology and immunopathology.
[5] J. A. Hartigan,et al. A k-means clustering algorithm , 1979 .
[6] J. T. Robinson,et al. The K-D-B-tree: a search structure for large multidimensional dynamic indexes , 1981, SIGMOD '81.
[7] Sudipto Guha,et al. CURE: an efficient clustering algorithm for large databases , 1998, SIGMOD '98.
[8] Olfa Nasraoui,et al. From Static to Dynamic Web Usage Mining : Towards Scalable Profiling and Personalization with Evolutionary Computation , 2003 .
[9] Michael Ian Shamos,et al. Computational geometry: an introduction , 1985 .
[10] Jeffrey Scott Vitter,et al. Bkd-Tree: A Dznamic Scalable kd-Tree , 2003, SSTD.
[11] Kuldip K. Paliwal,et al. Fast K-dimensional tree algorithms for nearest neighbor search with application to vector quantization encoding , 1992, IEEE Trans. Signal Process..
[12] Dimitris K. Tasoulis,et al. Parallelizing the Unsupervised k-Windows Clustering Algorithm , 2003, PPAM.
[13] Daniela Rus,et al. A practical clustering algorithm for static and dynamic information organization , 1999, SODA '99.
[14] Bernard Chazelle. Filtering Search: A New Approach to Query-Answering , 1983, FOCS.
[15] Peter Willett,et al. Recent trends in hierarchic document clustering: A critical review , 1988, Inf. Process. Manag..
[16] Martin Ester,et al. Incremental Generalization for Mining in a Data Warehousing Environment , 1998, EDBT.
[17] Dimitris K. Tasoulis,et al. Improving the orthogonal range search k-windows algorithm , 2002, 14th IEEE International Conference on Tools with Artificial Intelligence, 2002. (ICTAI 2002). Proceedings..
[18] Hans-Peter Kriegel,et al. Incremental Clustering for Mining in a Data Warehousing Environment , 1998, VLDB.
[19] Michael N. Vrahatis,et al. The New k-Windows Algorithm for Improving the k-Means Clustering Algorithm , 2002, J. Complex..
[20] Hans-Peter Kriegel,et al. Density-Based Clustering in Spatial Databases: The Algorithm GDBSCAN and Its Applications , 1998, Data Mining and Knowledge Discovery.
[21] Aimo A. Törn,et al. Global Optimization , 1999, Science.
[22] Dimitris K. Tasoulis,et al. Parallel Unsupervised k-Windows: An Efficient Parallel Clustering Algorithm , 2003, PaCT.
[23] George Karypis,et al. C HAMELEON : A Hierarchical Clustering Algorithm Using Dynamic Modeling , 1999 .
[24] F. Frances Yao,et al. Computational Geometry , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.
[25] Leonidas J. Guibas,et al. Fractional cascading: II. Applications , 1986, Algorithmica.
[26] Fazli Can,et al. Incremental clustering for dynamic information processing , 1993, TOIS.
[27] Betty Salzberg,et al. Back to the future: dynamic hierarchical clustering , 1998, Proceedings 14th International Conference on Data Engineering.
[28] Rajeev Motwani,et al. Incremental Clustering and Dynamic Information Retrieval , 2004, SIAM J. Comput..
[29] Dimitris K. Tasoulis,et al. Unsupervised distributed clustering , 2004, Parallel and Distributed Computing and Networks.
[30] Hermann A. Maurer,et al. Efficient worst-case data structures for range searching , 1978, Acta Informatica.
[31] Hans-Peter Kriegel,et al. Incremental OPTICS: Efficient Computation of Updates in a Hierarchical Cluster Ordering , 2003, DaWaK.
[32] David Wai-Lok Cheung,et al. A General Incremental Technique for Maintaining Discovered Association Rules , 1997, DASFAA.
[33] Vipin Kumar,et al. Chameleon: Hierarchical Clustering Using Dynamic Modeling , 1999, Computer.