Multilabel classification via calibrated label ranking

Label ranking studies the problem of learning a mapping from instances to rankings over a predefined set of labels. Hitherto existing approaches to label ranking implicitly operate on an underlying (utility) scale which is not calibrated in the sense that it lacks a natural zero point. We propose a suitable extension of label ranking that incorporates the calibrated scenario and substantially extends the expressive power of these approaches. In particular, our extension suggests a conceptually novel technique for extending the common learning by pairwise comparison approach to the multilabel scenario, a setting previously not being amenable to the pairwise decomposition technique. The key idea of the approach is to introduce an artificial calibration label that, in each example, separates the relevant from the irrelevant labels. We show that this technique can be viewed as a combination of pairwise preference learning and the conventional relevance classification technique, where a separate classifier is trained to predict whether a label is relevant or not. Empirical results in the area of text categorization, image classification and gene analysis underscore the merits of the calibrated model in comparison to state-of-the-art multilabel learning methods.

[1]  Q. Mcnemar Note on the sampling error of the difference between correlated proportions or percentages , 1947, Psychometrika.

[2]  R. A. Bradley,et al.  RANK ANALYSIS OF INCOMPLETE BLOCK DESIGNS , 1952 .

[3]  R. A. Bradley,et al.  RANK ANALYSIS OF INCOMPLETE BLOCK DESIGNS THE METHOD OF PAIRED COMPARISONS , 1952 .

[4]  J. Putter The Treatment of Ties in Some Nonparametric Tests , 1955 .

[5]  Gerard Salton,et al.  Term-Weighting Approaches in Automatic Text Retrieval , 1988, Inf. Process. Manag..

[6]  Gérard Dreyfus,et al.  Single-layer learning revisited: a stepwise procedure for building and training a neural network , 1989, NATO Neurocomputing.

[7]  Françoise Fogelman-Soulié,et al.  Neurocomputing : algorithms, architectures and applications , 1990 .

[8]  Gérard Dreyfus,et al.  Handwritten digit recognition by neural networks with single-layer training , 1992, IEEE Trans. Neural Networks.

[9]  Gérard Dreyfus,et al.  Pairwise Neural Network Classifiers with Probabilistic Outputs , 1994, NIPS.

[10]  C. W. Coakley,et al.  Versions of the Sign Test in the Presence of Ties , 1996 .

[11]  Herbert Gish,et al.  Speaker identification via support vector classifiers , 1996, 1996 IEEE International Conference on Acoustics, Speech, and Signal Processing Conference Proceedings.

[12]  David D. Lewis,et al.  Reuters-21578 Text Categorization Test Collection, Distribution 1.0 , 1997 .

[13]  Robert Tibshirani,et al.  Classification by Pairwise Coupling , 1997, NIPS.

[14]  Yoram Singer,et al.  Improved Boosting Algorithms Using Confidence-rated Predictions , 1998, COLT' 98.

[15]  Nello Cristianini,et al.  Advances in Kernel Methods - Support Vector Learning , 1999 .

[16]  Masami Ito,et al.  Task decomposition and module combination based on class relations: a modular neural network for pattern classification , 1999, IEEE Trans. Neural Networks.

[17]  B. Schölkopf,et al.  Advances in kernel methods: support vector learning , 1999 .

[18]  Ulrich H.-G. Kreßel,et al.  Pairwise classification and support vector machines , 1999 .

[19]  Patrick Brézillon,et al.  Lecture Notes in Artificial Intelligence , 1999 .

[20]  Jason Weston,et al.  A kernel method for multi-labelled classification , 2001, NIPS.

[21]  Christopher K. I. Williams,et al.  Advances in Neural Information Processing Systems 15 (NIPS 2002) , 2002 .

[22]  Koby Crammer,et al.  A new family of online algorithms for category ranking , 2002, SIGIR '02.

[23]  Chih-Jen Lin,et al.  A comparison of methods for multiclass support vector machines , 2002, IEEE Trans. Neural Networks.

[24]  Johannes Fürnkranz,et al.  Round Robin Classification , 2002, J. Mach. Learn. Res..

[25]  Dan Roth,et al.  Constraint Classification: A New Approach to Multiclass Classification , 2002, ALT.

[26]  Thomas Gärtner,et al.  A survey of kernels for structured data , 2003, SKDD.

[27]  Johannes Fürnkranz,et al.  Round robin ensembles , 2003, Intell. Data Anal..

[28]  Koby Crammer,et al.  A Family of Additive Online Algorithms for Category Ranking , 2003, J. Mach. Learn. Res..

[29]  Eyke Hüllermeier,et al.  Pairwise Preference Learning and Ranking , 2003, ECML.

[30]  Yoram Singer,et al.  Log-Linear Models for Label Ranking , 2003, NIPS.

[31]  Yiming Yang,et al.  RCV1: A New Benchmark Collection for Text Categorization Research , 2004, J. Mach. Learn. Res..

[32]  Yiming Yang,et al.  An Evaluation of Statistical Approaches to Text Categorization , 1999, Information Retrieval.

[33]  Jiebo Luo,et al.  Learning multi-label scene classification , 2004, Pattern Recognit..

[34]  Thomas Hofmann,et al.  Support vector machine learning for interdependent and structured output spaces , 2004, ICML.

[35]  Thomas Hofmann,et al.  Hierarchical document categorization with support vector machines , 2004, CIKM '04.

[36]  Florentin Wörgötter,et al.  Advances in Neural Information Processing Systems 16 (NIPS 2003) , 2004 .

[37]  Yoram Singer,et al.  BoosTexter: A Boosting-based System for Text Categorization , 2000, Machine Learning.

[38]  Zhi-Hua Zhou,et al.  A k-nearest neighbor based algorithm for multi-label classification , 2005, 2005 IEEE International Conference on Granular Computing.

[39]  Mikhail Belkin,et al.  Margin Semi-Supervised Learning for Structured Variables , 2005, NIPS.

[40]  Juho Rousu,et al.  Kernel-Based Learning of Hierarchical Multilabel Classification Models , 2006, J. Mach. Learn. Res..

[41]  Janez Demsar,et al.  Statistical Comparisons of Classifiers over Multiple Data Sets , 2006, J. Mach. Learn. Res..

[42]  Yoram Singer,et al.  Efficient Learning of Label Ranking by Soft Projections onto Polyhedra , 2006, J. Mach. Learn. Res..

[43]  Eyke Hüllermeier,et al.  A Unified Model for Multilabel Classification and Ranking , 2006, ECAI.

[44]  Eyke Hüllermeier,et al.  Multiple Graph Alignment for the Structural Analysis of Protein Active Sites , 2007, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[45]  M. Craven,et al.  Pairwise learning of multilabel classifications with perceptrons , 2008, 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence).

[46]  Grigorios Tsoumakas,et al.  Multi-Label Classification: An Overview , 2007, Int. J. Data Warehous. Min..

[47]  Johannes Fürnkranz,et al.  Efficient Pairwise Classification , 2007, ECML.

[48]  Eyke Hüllermeier,et al.  Case-Based Multilabel Ranking , 2007, IJCAI.

[49]  Eyke Hüllermeier,et al.  Label ranking by learning pairwise preferences , 2008, Artif. Intell..