Image harmonization: A review of statistical and deep learning methods for removing batch effects and evaluation metrics for effective harmonization

[1]  Chunshui Yu,et al.  Four Distinct Subtypes of Alzheimer’s Disease Based on Resting-State Connectivity Biomarkers , 2022, Biological Psychiatry.

[2]  Thomas Christen,et al.  ImUnity: a generalizable VAE-GAN solution for multicenter MR image harmonization , 2021, Medical Image Analysis.

[3]  C. Cavaliere,et al.  A Framework of Analysis to Facilitate the Harmonization of Multicenter Radiomic Features in Prostate Cancer , 2022, Journal of clinical medicine.

[4]  M. Mazurowski,et al.  Deep Learning for Breast MRI Style Transfer with Limited Training Data , 2022, Journal of Digital Imaging.

[5]  Rhea D. Chitalia,et al.  Resampling and harmonization for mitigation of heterogeneity in image parameters of baseline scans , 2022, Scientific reports.

[6]  Jinwoo Hong,et al.  General psychopathology factor (p-factor) prediction using resting-state functional connectivity and a scanner-generalization neural network. , 2022, Journal of psychiatric research.

[7]  G. Williams,et al.  Validation of cross-sectional and longitudinal ComBat harmonization methods for magnetic resonance imaging data on a travelling subject cohort , 2022, Neuroimage. Reports.

[8]  R. Bateman,et al.  Lecanemab in Early Alzheimer's Disease. , 2022, The New England journal of medicine.

[9]  Eric A. Cohen,et al.  Improved generalized ComBat methods for harmonization of radiomic features , 2022, Scientific Reports.

[10]  Georgios C. Manikis,et al.  Harmonization Strategies in Multicenter MRI-Based Radiomics , 2022, J. Imaging.

[11]  N. Jahanshad,et al.  Site effects how-to and when: An overview of retrospective techniques to accommodate site effects in multi-site neuroimaging analyses , 2022, Frontiers in Neurology.

[12]  G. Logroscino,et al.  The impact of harmonization on radiomic features in Parkinson’s disease and healthy controls: A multicenter study , 2022, Frontiers in Neuroscience.

[13]  Bruno M. de Brito Robalo,et al.  Improved sensitivity and precision in multicentre diffusion MRI network analysis using thresholding and harmonization , 2022, NeuroImage: Clinical.

[14]  M. Battaglini,et al.  Multicenter data harmonization for regional brain atrophy and application in multiple sclerosis , 2022, Journal of Neurology.

[15]  Weili Lin,et al.  Fast Image-Level MRI Harmonization via Spectrum Analysis , 2022, MLMI@MICCAI.

[16]  C. Delrieux,et al.  Assessing Multi-Site rs-fMRI-Based Connectomic Harmonization Using Information Theory , 2022, Brain sciences.

[17]  A. Voineskos,et al.  A structured multivariate approach for removal of latent batch effects , 2022 .

[18]  Y. Li,et al.  The alterations of brain functional connectivity networks in major depressive disorder detected by machine learning through multisite rs-fMRI data , 2022, Behavioural Brain Research.

[19]  Zhao Liu,et al.  Style transfer in conditional GANs for cross-modality synthesis of brain magnetic resonance images , 2022, Comput. Biol. Medicine.

[20]  B. Yeo,et al.  Goal-specific brain MRI harmonization , 2022, NeuroImage.

[21]  L. Concha,et al.  Structural network alterations in focal and generalized epilepsy assessed in a worldwide ENIGMA study follow axes of epilepsy risk gene expression , 2022, Nature Communications.

[22]  R. Sun,et al.  AutoComBat: a generic method for harmonizing MRI-based radiomic features , 2022, Scientific Reports.

[23]  Mahbaneh Eshaghzadeh Torbati,et al.  ComBat Harmonization: Empirical Bayes versus Fully Bayes Approaches , 2022, bioRxiv.

[24]  Chunshui Yu,et al.  Environmental neuroscience linking exposome to brain structure and function underlying cognition and behavior , 2022, Molecular Psychiatry.

[25]  V. Vergara,et al.  Multi-Site Mild Traumatic Brain Injury Classification with Machine Learning and Harmonization , 2022, 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC).

[26]  Suheyla Cetin Karayumak,et al.  Cross-site harmonization of multi-shell diffusion MRI measures based on rotational invariant spherical harmonics (RISH) , 2022, NeuroImage.

[27]  S. Nie,et al.  Self-supervised learning for multi-center magnetic resonance imaging harmonization without traveling phantoms , 2022, Physics in medicine and biology.

[28]  Adrian I. Onicas,et al.  Multisite Harmonization of Structural DTI Networks in Children: An A-CAP Study , 2022, Frontiers in Neurology.

[29]  D. Na,et al.  Harmonization of Multicenter Cortical Thickness Data by Linear Mixed Effect Model , 2022, Frontiers in Aging Neuroscience.

[30]  A. Malhotra,et al.  A longitudinal multi-scanner multimodal human neuroimaging dataset , 2022, Scientific Data.

[31]  R. Bellotti,et al.  Multi-site harmonization of MRI data uncovers machine-learning discrimination capability in barely separable populations: An example from the ABIDE dataset , 2022, NeuroImage: Clinical.

[32]  Colin B. Hansen,et al.  Contrastive semi-supervised harmonization of single-shell to multi-shell diffusion MRI. , 2022, Magnetic resonance imaging.

[33]  C. Lebel,et al.  Lifespan Volume Trajectories From Non–harmonized T1–Weighted MRI Do Not Differ After Site Correction Based on Traveling Human Phantoms , 2022, Frontiers in Neurology.

[34]  Iyad Ba Gari,et al.  Multisite test–retest reliability and compatibility of brain metrics derived from FreeSurfer versions 7.1, 6.0, and 5.3 , 2022, bioRxiv.

[35]  Jerry L Prince,et al.  Evaluating the impact of MR image harmonization on thalamus deep network segmentation , 2022, Medical Imaging.

[36]  Anup Tuladhar,et al.  Lesion-preserving unpaired image-to-image translation between MRI and CT from ischemic stroke patients , 2022, Medical Imaging.

[37]  A. Scarsbrook,et al.  Harmonisation of scanner-dependent contrast variations in magnetic resonance imaging for radiation oncology, using style-blind auto-encoders , 2022, Physics and imaging in radiation oncology.

[38]  A. Hussain,et al.  A Novel 3D Unsupervised Domain Adaptation Framework for Cross-Modality Medical Image Segmentation , 2022, IEEE Journal of Biomedical and Health Informatics.

[39]  Timothy O. Laumann,et al.  Reproducible brain-wide association studies require thousands of individuals , 2022, Nature.

[40]  Sharyn I. Katz,et al.  Generalized ComBat harmonization methods for radiomic features with multi-modal distributions and multiple batch effects , 2022, Scientific Reports.

[41]  Daniel P. Kennedy,et al.  Video‐evoked fMRI BOLD responses are highly consistent across different data acquisition sites , 2022, Human brain mapping.

[42]  V. Calhoun,et al.  A Decentralized ComBat Algorithm and Applications to Functional Network Connectivity , 2022, Frontiers in Neurology.

[43]  G. Venkatasubramanian,et al.  Sample size requirement for achieving multisite harmonization using structural brain MRI features , 2022, NeuroImage.

[44]  J. Qiu,et al.  Connectome gradient dysfunction in major depression and its association with gene expression profiles and treatment outcomes , 2022, Molecular Psychiatry.

[45]  H. Vargas,et al.  Impact of ComBat Harmonization on PET Radiomics-Based Tissue Classification: A Dual-Center PET/MRI and PET/CT Study , 2022, The Journal of Nuclear Medicine.

[46]  O. Andreassen,et al.  In vivo white matter microstructure in adolescents with early-onset psychosis: a multi-site mega-analysis , 2022, Molecular Psychiatry.

[47]  M. Battaglini,et al.  MAGNIMS recommendations for harmonization of MRI data in MS multicenter studies , 2022, NeuroImage: Clinical.

[48]  Víctor M. Campello,et al.  Minimising multi-centre radiomics variability through image normalisation: a pilot study , 2022, Scientific Reports.

[49]  S. Ken,et al.  Radiomics-Based Detection of Radionecrosis Using Harmonized Multiparametric MRI , 2022, Cancers.

[50]  Yong He,et al.  A deep learning-based multisite neuroimage harmonization framework established with a traveling-subject dataset , 2021, NeuroImage.

[51]  D. Bassett,et al.  Harmonizing functional connectivity reduces scanner effects in community detection , 2021, NeuroImage.

[52]  Evan M. Gordon,et al.  A comparison of methods to harmonize cortical thickness measurements across scanners and sites , 2021, NeuroImage.

[53]  A. L. Ware,et al.  Harmonisation of multi-site MRS data with ComBat , 2021, bioRxiv.

[54]  R. Shinohara,et al.  Privacy-preserving harmonization via distributed ComBat , 2021, NeuroImage.

[55]  Dan J Stein,et al.  Brain charts for the human lifespan , 2021, Nature.

[56]  A. Marquand,et al.  Accommodating Site Variation In Neuroimaging Data Using Normative And Hierarchical Bayesian Models , 2021, NeuroImage.

[57]  J. Thiran,et al.  Neuroimaging Harmonization Using cGANs: Image Similarity Metrics Poorly Predict Cross-Protocol Volumetric Consistency , 2022, MLCN@MICCAI.

[58]  Seong Jae Hwang,et al.  MISPEL: A deep learning approach for harmonizing multi-scanner matched neuroimaging data , 2022 .

[59]  Justin C. Park,et al.  Deep Learning in Large and Multi-Site Structural Brain MR Imaging Datasets , 2022, Frontiers in Neuroinformatics.

[60]  Joanne C. Beer,et al.  Mitigating site effects in covariance for machine learning in neuroimaging data , 2021, Human brain mapping.

[61]  J. Vogelstein,et al.  Moving Beyond Processing and Analysis-Related Variation in Neuroscience , 2021, bioRxiv.

[62]  Alexandra M. Reardon,et al.  Improving Between-Group Effect Size for Multi-Site Functional Connectivity Data via Site-Wise De-Meaning , 2021, Frontiers in Computational Neuroscience.

[63]  A. Leemans,et al.  Diffusion MRI harmonization enables joint-analysis of multicentre data of patients with cerebral small vessel disease , 2021, NeuroImage: Clinical.

[64]  F. Tixier,et al.  Evaluation of conventional and deep learning based image harmonization methods in radiomics studies , 2021, Physics in medicine and biology.

[65]  M. Hatt,et al.  Development of a Radiomic-Based Model Predicting Lymph Node Involvement in Prostate Cancer Patients , 2021, Cancers.

[66]  Seong Jae Hwang,et al.  A multi-scanner neuroimaging data harmonization using RAVEL and ComBat , 2021, NeuroImage.

[67]  Jie Zhang,et al.  Cross-Vendor CT Image Data Harmonization Using CVH-CT , 2021, AMIA.

[68]  T. Nir,et al.  Diffusion MRI metrics and their relation to dementia severity: effects of harmonization approaches , 2021, Symposium on Medical Information Processing and Analysis.

[69]  V. Schmithorst,et al.  Harmonization of Multi-Center Diffusion Tensor Tractography in Neonates with Congenital Heart Disease: Optimizing Post-Processing and Application of ComBat , 2021, medRxiv.

[70]  Osamu Abe,et al.  Cross-scanner reproducibility and harmonization of a diffusion MRI structural brain network: A traveling subject study of multi-b acquisition , 2021, NeuroImage.

[71]  M. Giger,et al.  Multi-Stage Harmonization for Robust AI across Breast MR Databases , 2021, Cancers.

[72]  J. Morris,et al.  Deep Generative Medical Image Harmonization for Improving Cross‐Site Generalization in Deep Learning Predictors , 2021, Journal of magnetic resonance imaging : JMRI.

[73]  Jerry L Prince,et al.  Unsupervised MR harmonization by learning disentangled representations using information bottleneck theory , 2021, NeuroImage.

[74]  Bo Li,et al.  IAS-NET: Joint Intra-classly Adaptive GAN and Segmentation network for unsupervised cross-domain in Neonatal Brain MRI segmentation. , 2021, Medical physics.

[75]  Eric W. Bridgeford,et al.  Eliminating accidental deviations to minimize generalization error and maximize replicability: Applications in connectomics and genomics , 2021, PLoS Comput. Biol..

[76]  Saori C. Tanaka,et al.  A multi-site, multi-disorder resting-state magnetic resonance image database , 2021, Scientific Data.

[77]  Saori C. Tanaka,et al.  Comparison of traveling‐subject and ComBat harmonization methods for assessing structural brain characteristics , 2021, Human brain mapping.

[78]  P. Thompson,et al.  Alzheimer’s Disease Classification Accuracy is Improved by MRI Harmonization based on Attention-Guided Generative Adversarial Networks , 2021, bioRxiv.

[79]  Benjamin N. Conrad,et al.  MASiVar: Multisite, multiscanner, and multisubject acquisitions for studying variability in diffusion weighted MRI , 2021, Magnetic Resonance in Medicine.

[80]  Jordan D Dworkin,et al.  Maturity of gray matter structures and white matter connectomes, and their relationship with psychiatric symptoms in youth , 2021, Human brain mapping.

[81]  A. Anwander,et al.  Same Brain, Different Look?—The Impact of Scanner, Sequence and Preprocessing on Diffusion Imaging Outcome Parameters , 2021, Journal of clinical medicine.

[82]  M. Hatt,et al.  A transfer learning approach to facilitate ComBat-based harmonization of multicentre radiomic features in new datasets , 2021, PloS one.

[83]  Aaron Carass,et al.  Autoencoder based self-supervised test-time adaptation for medical image analysis , 2021, Medical Image Anal..

[84]  Saori C. Tanaka,et al.  Common Brain Networks Between Major Depressive-Disorder Diagnosis and Symptoms of Depression That Are Validated for Independent Cohorts , 2021, Frontiers in Psychiatry.

[85]  C. Balleyguier,et al.  Impact of Preprocessing and Harmonization Methods on the Removal of Scanner Effects in Brain MRI Radiomic Features , 2021, Cancers.

[86]  D. Rangaprakash,et al.  Functional Connectivity-Based Prediction of Autism on Site Harmonized ABIDE Dataset , 2021, IEEE Transactions on Biomedical Engineering.

[87]  A. Abi-Dargham,et al.  Cross‐Scanner Harmonization of Neuromelanin‐Sensitive MRI for Multisite Studies , 2021, Journal of magnetic resonance imaging : JMRI.

[88]  Dinggang Shen,et al.  Multi-site MRI harmonization via attention-guided deep domain adaptation for brain disorder identification , 2021, Medical Image Anal..

[89]  Eva Rothgang,et al.  MR-contrast-aware image-to-image translations with generative adversarial networks , 2021, International Journal of Computer Assisted Radiology and Surgery.

[90]  Tilo Kircher,et al.  The German research consortium for the study of bipolar disorder (BipoLife): a magnetic resonance imaging study protocol , 2021, International Journal of Bipolar Disorders.

[91]  N. Jahanshad,et al.  Style Transfer Using Generative Adversarial Networks for Multi-Site MRI Harmonization , 2021, bioRxiv.

[92]  C. Schwarz Uses of Human MR and PET Imaging in Research of Neurodegenerative Brain Diseases , 2021, Neurotherapeutics.

[93]  Saori C. Tanaka,et al.  Brain/MINDS beyond human brain MRI project: A protocol for multi-level harmonization across brain disorders throughout the lifespan , 2021, NeuroImage: Clinical.

[94]  X. Buy,et al.  Assessment of Repeatability, Reproducibility, and Performances of T2 Mapping‐Based Radiomics Features: A Comparative Study , 2021, Journal of magnetic resonance imaging : JMRI.

[95]  W. Johnson,et al.  Overcoming the impacts of two-step batch effect correction on gene expression estimation and inference , 2021, bioRxiv.

[96]  N. Obuchowski,et al.  Incorporating radiomics into clinical trials: expert consensus endorsed by the European Society of Radiology on considerations for data-driven compared to biologically driven quantitative biomarkers , 2021, European Radiology.

[97]  Nicola K. Dinsdale,et al.  Deep learning-based unlearning of dataset bias for MRI harmonisation and confound removal , 2020, NeuroImage.

[98]  Klaus P. Ebmeier,et al.  Integrating large-scale neuroimaging research datasets: Harmonisation of white matter hyperintensity measurements across Whitehall and UK Biobank datasets , 2020, NeuroImage.

[99]  Christian Wachinger,et al.  Detect and Correct Bias in Multi-Site Neuroimaging Datasets , 2020, Medical Image Anal..

[100]  David Rossell,et al.  Heterogeneous Large Datasets Integration Using Bayesian Factor Regression , 2018, Bayesian Analysis.

[101]  OUP accepted manuscript , 2021, Biostatistics.

[102]  Jenny Benois-Pineau,et al.  Improving Alzheimer's stage categorization with Convolutional Neural Network using transfer learning and different magnetic resonance imaging modalities , 2020, Heliyon.

[103]  Saori C. Tanaka,et al.  Generalizable brain network markers of major depressive disorder across multiple imaging sites , 2020, PLoS biology.

[104]  Uwe Oelfke,et al.  Cross-modality deep learning: Contouring of MRI data from annotated CT data only. , 2020, Medical physics.

[105]  Matcheri Keshavan,et al.  Exploring the limits of ComBat method for multi-site diffusion MRI harmonization , 2020, bioRxiv.

[106]  Fanny Orlhac,et al.  A radiomics pipeline dedicated to Breast MRI: validation on a multi-scanner phantom study , 2020, Magnetic Resonance Materials in Physics, Biology and Medicine.

[107]  Saad Jbabdi,et al.  Challenges and future directions for representations of functional brain organization , 2020, Nature Neuroscience.

[108]  Peter A. Calabresi,et al.  A Disentangled Latent Space for Cross-Site MRI Harmonization , 2020, MICCAI.

[109]  Fanny Orlhac,et al.  How can we combat multicenter variability in MR radiomics? Validation of a correction procedure , 2020, European Radiology.

[110]  Olivier Saut,et al.  Intensity harmonization techniques influence radiomics features and radiomics-based predictions in sarcoma patients , 2020, Scientific Reports.

[111]  Jianhui Zhong,et al.  A deep learning-based method for improving reliability of multicenter diffusion kurtosis imaging with varied acquisition protocols. , 2020, Magnetic resonance imaging.

[112]  Dimitris Visvikis,et al.  Harmonization strategies for multicenter radiomics investigations , 2020, Physics in medicine and biology.

[113]  F. Sepehrband,et al.  Cross-scanner and cross-protocol multi-shell diffusion MRI data harmonization: Algorithms and results , 2020, NeuroImage.

[114]  X. Shen,et al.  A hitchhiker’s guide to working with large, open-source neuroimaging datasets , 2020, Nature Human Behaviour.

[115]  Joanne C. Beer,et al.  Longitudinal ComBat: A method for harmonizing longitudinal multi-scanner imaging data☆ , 2020, NeuroImage.

[116]  A. Mechelli,et al.  Neuroharmony: A new tool for harmonizing volumetric MRI data from unseen scanners , 2020, NeuroImage.

[117]  S. Sisodiya,et al.  Valproate Use Is Associated With Posterior Cortical Thinning and Ventricular Enlargement in Epilepsy Patients , 2020, Frontiers in Neurology.

[118]  Eva Friedel,et al.  Simulating ComBat: how batch correction can lead to the systematic introduction of false positive results in DNA methylation microarray studies , 2020, BMC Bioinformatics.

[119]  M. Hatt,et al.  Performance comparison of modified ComBat for harmonization of radiomic features for multicenter studies , 2020, Scientific Reports.

[120]  Tommy Löfstedt,et al.  Latent Space Manipulation for High-Resolution Medical Image Synthesis via the StyleGAN. , 2020, Zeitschrift fur medizinische Physik.

[121]  Russell T. Shinohara,et al.  Increased power by harmonizing structural MRI site differences with the ComBat batch adjustment method in ENIGMA , 2020, NeuroImage.

[122]  Lars T. Westlye,et al.  Hierarchical Bayesian Regression for Multi-Site Normative Modeling of Neuroimaging Data , 2020, MICCAI.

[123]  Andrew L. Alexander,et al.  A 3D Fully Convolutional Neural Network With Top-Down Attention-Guided Refinement for Accurate and Robust Automatic Segmentation of Amygdala and Its Subnuclei , 2020, Frontiers in Neuroscience.

[124]  W. Tseng,et al.  Generalization of diffusion magnetic resonance imaging–based brain age prediction model through transfer learning , 2020, NeuroImage.

[125]  Jan Sijbers,et al.  Harmonization of Brain Diffusion MRI: Concepts and Methods , 2020, Frontiers in Neuroscience.

[126]  Kok Siong Ang,et al.  A benchmark of batch-effect correction methods for single-cell RNA sequencing data , 2020, Genome Biology.

[127]  Xinbo Gao,et al.  Inter-site harmonization based on dual generative adversarial networks for diffusion tensor imaging: application to neonatal white matter development , 2020, BioMedical Engineering OnLine.

[128]  Maryellen L. Giger,et al.  Harmonization of radiomic features of breast lesions across international DCE-MRI datasets , 2020, Journal of medical imaging.

[129]  Christos Davatzikos,et al.  Harmonization of large MRI datasets for the analysis of brain imaging patterns throughout the lifespan , 2019, NeuroImage.

[130]  Douglas L. Arnold,et al.  Deep learning segmentation of orbital fat to calibrate conventional MRI for longitudinal studies , 2019, NeuroImage.

[131]  Jung-Woo Ha,et al.  StarGAN v2: Diverse Image Synthesis for Multiple Domains , 2019, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[132]  Richard G. Wise,et al.  Multi-site harmonization of 7 tesla MRI neuroimaging protocols , 2019, NeuroImage.

[133]  A. Simmons,et al.  The reliability of a deep learning model in clinical out-of-distribution MRI data: a multicohort study , 2019, Medical Image Anal..

[134]  J Wrobel,et al.  Intensity warping for multisite MRI harmonization , 2019, NeuroImage.

[135]  Paul M. Thompson,et al.  Scanner invariant representations for diffusion MRI harmonization , 2019, Magnetic resonance in medicine.

[136]  AmanPreet Badhwar,et al.  Multivariate consistency of resting-state fMRI connectivity maps acquired on a single individual over 2.5 years, 13 sites and 3 vendors , 2018, NeuroImage.

[137]  Tolga Çukur,et al.  A Transfer‐Learning Approach for Accelerated MRI Using Deep Neural Networks , 2017, Magnetic resonance in medicine.

[138]  Neda Bernasconi,et al.  White matter abnormalities across different epilepsy syndromes in adults: an ENIGMA Epilepsy study , 2019, bioRxiv.

[139]  Aaron Carass,et al.  DeepHarmony: A deep learning approach to contrast harmonization across scanner changes. , 2019, Magnetic resonance imaging.

[140]  Dimitris Visvikis,et al.  Standardization of Multicentric Image Datasets with Generative Adversarial Networks , 2019 .

[141]  Li Wang,et al.  Harmonization of Infant Cortical Thickness Using Surface-to-Surface Cycle-Consistent Adversarial Networks , 2019, MICCAI.

[142]  Timothy O. Laumann,et al.  Identifying reproducible individual differences in childhood functional brain networks: An ABCD study , 2019, Developmental Cognitive Neuroscience.

[143]  Yogesh Rathi,et al.  White matter abnormalities across the lifespan of schizophrenia: a harmonized multi-site diffusion MRI study , 2019, Molecular Psychiatry.

[144]  Fan Zhang,et al.  Unsupervised Domain Adaptation via Disentangled Representations: Application to Cross-Modality Liver Segmentation , 2019, MICCAI.

[145]  Christos Davatzikos,et al.  Neuroimaging Findings in US Government Personnel With Possible Exposure to Directional Phenomena in Havana, Cuba. , 2019, JAMA.

[146]  Jelle Veraart,et al.  Cross-scanner and cross-protocol diffusion MRI data harmonisation: A benchmark database and evaluation of algorithms , 2019, NeuroImage.

[147]  Nicu Sebe,et al.  Attention-Guided Generative Adversarial Networks for Unsupervised Image-to-Image Translation , 2019, 2019 International Joint Conference on Neural Networks (IJCNN).

[148]  Qing Ma,et al.  Reproducibility of functional brain alterations in major depressive disorder: Evidence from a multisite resting-state functional MRI study with 1,434 individuals , 2019, NeuroImage.

[149]  Timo Aila,et al.  A Style-Based Generator Architecture for Generative Adversarial Networks , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[150]  Lei Wang,et al.  Quantitative assessment of field strength, total intracranial volume, sex, and age effects on the goodness of harmonization for volumetric analysis on the ADNI database , 2018, Human brain mapping.

[151]  Anders M. Dale,et al.  Image processing and analysis methods for the Adolescent Brain Cognitive Development Study , 2018, NeuroImage.

[152]  Yogesh Rathi,et al.  Retrospective harmonization of multi-site diffusion MRI data acquired with different acquisition parameters , 2019, NeuroImage.

[153]  Aykut Erdem,et al.  Image Synthesis in Multi-Contrast MRI With Conditional Generative Adversarial Networks , 2018, IEEE Transactions on Medical Imaging.

[154]  Zhiwei Li,et al.  Fast and Robust Diffusion Kurtosis Parametric Mapping Using a Three-Dimensional Convolutional Neural Network , 2019, IEEE Access.

[155]  Thomas E. Nichols,et al.  Extending the Human Connectome Project across ages: Imaging protocols for the Lifespan Development and Aging projects , 2018, NeuroImage.

[156]  Paul M. Thompson,et al.  Diffusion MRI Indices and Their Relation to Cognitive Impairment in Brain Aging: The Updated Multi-protocol Approach in ADNI3 , 2018, bioRxiv.

[157]  Saori C. Tanaka,et al.  Harmonization of resting-state functional MRI data across multiple imaging sites via the separation of site differences into sampling bias and measurement bias , 2018, bioRxiv.

[158]  M. Weissman,et al.  Statistical harmonization corrects site effects in functional connectivity measurements from multi‐site fMRI data , 2018, Human brain mapping.

[159]  Adam G. Thomas,et al.  Detecting and harmonizing scanner differences in the ABCD study - annual release 1.0 , 2018, bioRxiv.

[160]  Avshalom Caspi,et al.  All for One and One for All: Mental Disorders in One Dimension. , 2018, The American journal of psychiatry.

[161]  Anders M. Dale,et al.  The Adolescent Brain Cognitive Development (ABCD) study: Imaging acquisition across 21 sites , 2018, Developmental Cognitive Neuroscience.

[162]  Russell T. Shinohara,et al.  Harmonization of cortical thickness measurements across scanners and sites , 2017, NeuroImage.

[163]  D. Reich,et al.  Volumetric Analysis from a Harmonized Multisite Brain MRI Study of a Single Subject with Multiple Sclerosis , 2017, American Journal of Neuroradiology.

[164]  Christos Davatzikos,et al.  Benchmarking of participant-level confound regression strategies for the control of motion artifact in studies of functional connectivity , 2017, NeuroImage.

[165]  Sepp Hochreiter,et al.  GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium , 2017, NIPS.

[166]  J. Rohrer,et al.  Imaging and fluid biomarkers in frontotemporal dementia , 2017, Nature Reviews Neurology.

[167]  Serge J. Belongie,et al.  Arbitrary Style Transfer in Real-Time with Adaptive Instance Normalization , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[168]  Ragini Verma,et al.  Harmonization of multi-site diffusion tensor imaging data , 2017, NeuroImage.

[169]  Theo G. M. van Erp,et al.  Multisite reliability of MR-based functional connectivity , 2017, NeuroImage.

[170]  Peter Savadjiev,et al.  Multi-site harmonization of diffusion MRI data in a registration framework , 2017, Brain Imaging and Behavior.

[171]  Peter Savadjiev,et al.  Inter-site and inter-scanner diffusion MRI data harmonization , 2016, NeuroImage.

[172]  Anisha Keshavan,et al.  Power estimation for non-standardized multisite studies , 2016, NeuroImage.

[173]  Russell T. Shinohara,et al.  Removing inter-subject technical variability in magnetic resonance imaging studies , 2016, NeuroImage.

[174]  Paul J. Harrison,et al.  Oxford Lithium Trial (OxLith) of the early affective, cognitive, neural and biochemical effects of lithium carbonate in bipolar disorder: study protocol for a randomised controlled trial , 2016, Trials.

[175]  Ludovico Minati,et al.  Longitudinal reproducibility of default-mode network connectivity in healthy elderly participants: A multicentric resting-state fMRI study , 2016, NeuroImage.

[176]  E. Hovig,et al.  Methods that remove batch effects while retaining group differences may lead to exaggerated confidence in downstream analyses , 2015, Biostatistics.

[177]  Honglak Lee,et al.  Learning Structured Output Representation using Deep Conditional Generative Models , 2015, NIPS.

[178]  Stephen M. Smith,et al.  ICA-based artifact removal diminishes scan site differences in multi-center resting-state fMRI , 2015, Front. Neurosci..

[179]  Peter Savadjiev,et al.  Harmonizing Diffusion MRI Data Across Multiple Sites and Scanners , 2015, MICCAI.

[180]  F. Dekker,et al.  Graphical presentation of confounding in directed acyclic graphs. , 2015, Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association.

[181]  D. Auer,et al.  Multi-centre reproducibility of diffusion MRI parameters for clinical sequences in the brain , 2015, NMR in biomedicine.

[182]  T. Scheenen,et al.  Multi‐center reproducibility of neurochemical profiles in the human brain at 7 T , 2015, NMR in biomedicine.

[183]  Nick C Fox,et al.  Imaging endpoints for clinical trials in Alzheimer’s disease , 2014, Alzheimer's Research & Therapy.

[184]  Krzysztof J. Gorgolewski,et al.  Making big data open: data sharing in neuroimaging , 2014, Nature Neuroscience.

[185]  C. Crainiceanu,et al.  Statistical normalization techniques for magnetic resonance imaging , 2014, NeuroImage: Clinical.

[186]  Steen Moeller,et al.  ICA-based artefact removal and accelerated fMRI acquisition for improved resting state network imaging , 2014, NeuroImage.

[187]  Michelle L. McGowan,et al.  Big data, open science and the brain: lessons learned from genomics , 2014, Front. Hum. Neurosci..

[188]  Gary H. Glover,et al.  A multi-scanner study of subcortical brain volume abnormalities in schizophrenia , 2014, Psychiatry Research: Neuroimaging.

[189]  Ludovica Griffanti,et al.  Automatic denoising of functional MRI data: Combining independent component analysis and hierarchical fusion of classifiers , 2014, NeuroImage.

[190]  Christos Davatzikos,et al.  Neuroimaging of the Philadelphia Neurodevelopmental Cohort , 2014, NeuroImage.

[191]  Naoto Hayashi,et al.  Effects of study design in multi-scanner voxel-based morphometry studies , 2014, NeuroImage.

[192]  Daniel P. Kennedy,et al.  The Autism Brain Imaging Data Exchange: Towards Large-Scale Evaluation of the Intrinsic Brain Architecture in Autism , 2013, Molecular Psychiatry.

[193]  Paul M. Thompson,et al.  Multi-site genetic analysis of diffusion images and voxelwise heritability analysis: A pilot project of the ENIGMA–DTI working group , 2013, NeuroImage.

[194]  Essa Yacoub,et al.  The WU-Minn Human Connectome Project: An overview , 2013, NeuroImage.

[195]  Timothy D Johnson,et al.  Multi‐system repeatability and reproducibility of apparent diffusion coefficient measurement using an ice‐water phantom , 2013, Journal of magnetic resonance imaging : JMRI.

[196]  K. Ohtomo,et al.  Effect of scanner in longitudinal studies of brain volume changes , 2011, Journal of magnetic resonance imaging : JMRI.

[197]  C. Jack,et al.  Chronic divalproex sodium to attenuate agitation and clinical progression of Alzheimer disease. , 2011, Archives of general psychiatry.

[198]  Brian B. Avants,et al.  N4ITK: Improved N3 Bias Correction , 2010, IEEE Transactions on Medical Imaging.

[199]  Fei-Fei Li,et al.  ImageNet: A large-scale hierarchical image database , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[200]  T. Trikalinos,et al.  Are unadjusted analyses of clinical trials inappropriately biased toward the null? , 2009, Stroke.

[201]  P. Bath,et al.  Should Stroke Trials Adjust Functional Outcome for Baseline Prognostic Factors? , 2009, Stroke.

[202]  Nimodipine BI Orgo,et al.  Should Stroke Trials Adjust Functional Outcome for Baseline Prognostic Factors ? , 2009 .

[203]  P. Hluštík,et al.  Effects of spatial smoothing on fMRI group inferences. , 2008, Magnetic resonance imaging.

[204]  Clifford R. Jack,et al.  Interpreting scan data acquired from multiple scanners: A study with Alzheimer's disease , 2008, NeuroImage.

[205]  Brian B. Avants,et al.  Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain , 2008, Medical Image Anal..

[206]  Cheng Li,et al.  Adjusting batch effects in microarray expression data using empirical Bayes methods. , 2007, Biostatistics.

[207]  Anders M. Dale,et al.  Reliability of MRI-derived measurements of human cerebral cortical thickness: The effects of field strength, scanner upgrade and manufacturer , 2006, NeuroImage.

[208]  Anders M. Dale,et al.  Reliability in multi-site structural MRI studies: Effects of gradient non-linearity correction on phantom and human data , 2006, NeuroImage.

[209]  Ludwig Kappos,et al.  A randomized, placebo-controlled trial of natalizumab for relapsing multiple sclerosis. , 2006, The New England journal of medicine.

[210]  Ewout W Steyerberg,et al.  Randomized controlled trials with time-to-event outcomes: how much does prespecified covariate adjustment increase power? , 2006, Annals of epidemiology.

[211]  M. Höfler,et al.  Causal inference based on counterfactuals , 2005, BMC medical research methodology.

[212]  C. Jack,et al.  Ways toward an early diagnosis in Alzheimer’s disease: The Alzheimer’s Disease Neuroimaging Initiative (ADNI) , 2005, Alzheimer's & Dementia.

[213]  Ewout W Steyerberg,et al.  Covariate adjustment in randomized controlled trials with dichotomous outcomes increases statistical power and reduces sample size requirements. , 2004, Journal of clinical epidemiology.

[214]  Scott T. Grafton,et al.  Sharing neuroimaging studies of human cognition , 2004, Nature Neuroscience.

[215]  Eero P. Simoncelli,et al.  Image quality assessment: from error visibility to structural similarity , 2004, IEEE Transactions on Image Processing.

[216]  T. Ihalainen,et al.  MRI quality control: six imagers studied using eleven unified image quality parameters , 2004, European Radiology.

[217]  Pierre Hellier,et al.  Consistent intensity correction of MR images , 2003, Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429).

[218]  L. K. Hansen,et al.  Independent component analysis of functional MRI: what is signal and what is noise? , 2003, Current Opinion in Neurobiology.

[219]  Stephen M Smith,et al.  Fast robust automated brain extraction , 2002, Human brain mapping.

[220]  Michael Brady,et al.  Improved Optimization for the Robust and Accurate Linear Registration and Motion Correction of Brain Images , 2002, NeuroImage.

[221]  L G Nyúl,et al.  On standardizing the MR image intensity scale , 1999, Magnetic resonance in medicine.

[222]  J. Neuhaus Estimation efficiency with omitted covariates in generalized linear models , 1998 .

[223]  David H. Miller,et al.  Correction for variations in MRI scanner sensitivity in brain studies with histogram matching , 1998, Magnetic resonance in medicine.

[224]  S Makeig,et al.  Analysis of fMRI data by blind separation into independent spatial components , 1998, Human brain mapping.

[225]  D. Rubin,et al.  The central role of the propensity score in observational studies for causal effects , 1983 .

[226]  M. Graffar [Modern epidemiology]. , 1971, Bruxelles medical.