An accurate relativistic universal Gaussian basis set for hydrogen through Nobelium without variational prolapse and to be used with both uniform sphere and Gaussian nucleus models

An accurate relativistic universal Gaussian basis set (RUGBS) from H through No without variational prolapse has been developed by employing the Generator Coordinate Dirac–Fock (GCDF) method. The behavior of our RUGBS was tested with two nuclear models: (1) the finite nucleus of uniform proton‐charge distribution, and (2) the finite nucleus with a Gaussian proton‐charge distribution. The largest error between our Dirac–Fock–Coulomb total energy values and those calculated numerically is 8.8 mHartree for the No atom. © 2005 Wiley Periodicals, Inc. J Comput Chem 26: 932–940, 2005

[1]  Yoshihiro Watanabe,et al.  Gaussian‐type function set without prolapse for the Dirac–Fock–Roothaan equation , 2003, J. Comput. Chem..

[2]  F. E. Jorge,et al.  On the inclusion of the Breit interaction term in the closed‐shell generator coordinate Dirac–Fock formalism , 1996 .

[3]  Y. Mochizuki,et al.  Prolapses in four-component relativistic Gaussian basis sets , 2003 .

[4]  H. Dacosta,et al.  On the implicit integral character of Roothaan's expansion , 1999 .

[5]  F. E. Jorge,et al.  A generator coordinate version of the closed‐shell Dirac–Fock equations , 1996 .

[6]  Richard E. Stanton,et al.  Kinetic balance: A partial solution to the problem of variational safety in Dirac calculations , 1984 .

[7]  O. Matsuoka,et al.  Relativistic Gaussian basis sets for molecular calculations: Cs–Hg , 2001 .

[8]  G. Soff,et al.  The lamb shift in hydrogen-like atoms, 1 ⩽ Z ⩽ 110 , 1985 .

[9]  O. Matsuoka,et al.  An atomic Dirac–Fock–Roothaan program☆ , 2001 .

[10]  A. D. McLean,et al.  RELATIVISTIC EFFECTS ON RE AND DE IN AGH AND AUH FROM ALL-ELECTRON DIRAC HARTREE-FOCK CALCULATIONS , 1982 .

[11]  O. Matsuoka Analytical Dirac-Fock SCF Method for Generalized Average Energy of Configurations , 1982 .

[12]  K. Fægri Relativistic Gaussian basis sets for the elements K – Uuo , 2001 .

[13]  Lucas Visscher,et al.  Dirac-Fock atomic electronic structure calculations using different nuclear charge distributions , 1997 .

[14]  H. Tatewaki,et al.  Gaussian-type function set without prolapse 1H through 83Bi for the Dirac-Fock-Roothaan equation. , 2004, The Journal of chemical physics.