Broadband Colossal Dielectric Constant in the Superionic Halide RbAg4I5: Role of Intercluster Ag+ Diffusion

Materials with ultrahigh dielectric constants and a low value of dielectric loss are important for energy storage and electronic devices. Traditionally, high dielectric constant is found in ferroel...

[1]  D. Sarma,et al.  Phase Diagram and Dielectric Properties of MA1–xFAxPbI3 , 2019, ACS Energy Letters.

[2]  M. Lanza,et al.  A Review on Dielectric Breakdown in Thin Dielectrics: Silicon Dioxide, High‐k, and Layered Dielectrics , 2019, Advanced Functional Materials.

[3]  Chao Yang,et al.  Colossal Permittivity Materials as Superior Dielectrics for Diverse Applications , 2019, Advanced Functional Materials.

[4]  D. Almond,et al.  Breakdown in the Case for Materials with Giant Permittivity , 2017 .

[5]  S. Holé,et al.  Rb2Ti2O5 : Superionic conductor with colossal dielectric constant , 2017 .

[6]  Joydeep Dhar,et al.  Positron Annihilation Spectroscopic Investigation on the Origin of Temperature-Dependent Electrical Response in Methylammonium Lead Iodide Perovskite. , 2017, The journal of physical chemistry letters.

[7]  A. Sarkar,et al.  Defect generation and recovery in polycrystalline ZnO during annealing below 300 °C as studied by in situ positron annihilation spectroscopy , 2017, Journal of Materials Science.

[8]  S. Priya,et al.  Giant piezoelectric voltage coefficient in grain-oriented modified PbTiO3 material , 2016, Nature Communications.

[9]  M. Sharon An Introduction to the Physics and Electrochemistry of Semiconductors: Fundamentals and Applications , 2016 .

[10]  K. Karatasos,et al.  Detailed study of the dielectric function of a lysozyme solution studied with molecular dynamics simulations , 2015, European Biophysics Journal.

[11]  C. Hwang,et al.  Novel high-κ dielectrics for next-generation electronic devices screened by automated ab initio calculations , 2015 .

[12]  T. Fukami,et al.  Anion Polarization Effects on Static Structure and Ionic Transport in Superionic Melt of RbAg 4 I 5 , 2015 .

[13]  Hua Chen,et al.  Electron-pinned defect-dipoles for high-performance colossal permittivity materials. , 2013, Nature materials.

[14]  Xihong Hao,et al.  A review on the dielectric materials for high energy-storage application , 2013 .

[15]  S. Ray,et al.  Positron annihilation lifetime and photoluminescence studies on single crystalline ZnO , 2011, Journal of physics. Condensed matter : an Institute of Physics journal.

[16]  Koji Yamada,et al.  Structure, ionic conduction, and giant dielectric properties of mechanochemically synthesized BaSnF4 , 2009 .

[17]  A. Nugroho,et al.  Colossal dielectric constant up to GHz at room temperature , 2008, 0811.1556.

[18]  Koji Yamada,et al.  Superionic PbSnF4: A giant dielectric constant material , 2007 .

[19]  Xuying Chen,et al.  Dielectric abnormities of complex perovskite Ba(Fe1∕2Nb1∕2)O3 ceramics over broad temperature and frequency range , 2007 .

[20]  H. Sakata,et al.  Copper (II) oxide as a giant dielectric material , 2006 .

[21]  M. Jansen,et al.  Low-temperature phases of rubidium silver iodide: crystal structures and dynamics of the mobile silver ions. , 2006, The journal of physical chemistry. A.

[22]  S. Yoda,et al.  Extrinsic origin of giant permittivity in hexagonal BaTiO3 single crystals: Contributions of interfacial layer and depletion layer , 2005 .

[23]  P. Lunkenheimer,et al.  Giant dielectric response in the one-dimensional charge-ordered semiconductor (NbSe4)3I. , 2005, Physical review letters.

[24]  R. Smith,et al.  Large Dielectric Constant and Maxwell-Wagner Relaxation in Bi 2/3 Cu 3 Ti 4 O 12 , 2004 .

[25]  A. Tagantsev,et al.  Room-temperature ferroelectricity in strained SrTiO3 , 2004, Nature.

[26]  S. Cheong,et al.  A Novel Dielectric Anomaly in Cuprates and Nickelates: Signature of an Electronic Glassy State , 2004, cond-mat/0404446.

[27]  P. Lunkenheimer,et al.  Nonintrinsic origin of the colossal dielectric constants in Ca Cu 3 Ti 4 O 12 , 2004, cond-mat/0403119.

[28]  Yuan Deng,et al.  Giant dielectric permittivity observed in Li and Ti doped NiO. , 2002, Physical review letters.

[29]  Derek C. Sinclair,et al.  Giant Barrier Layer Capacitance Effects in CaCu3Ti4O12 Ceramics , 2002 .

[30]  P. Littlewood,et al.  Sliding Density Wave in Sr14Cu24O41 Ladder Compounds , 2002, Science.

[31]  Fátima Esteban-Betegón,et al.  New Percolative BaTiO3–Ni Composites with a High and Frequency-Independent Dielectric Constant (εr ≈ 80000) , 2001 .

[32]  H. M. Jang,et al.  Giant dielectric permittivity observed in pb-based perovskite ferroelectrics. , 2001, Physical review letters.

[33]  Jon-Paul Maria,et al.  Alternative dielectrics to silicon dioxide for memory and logic devices , 2000, Nature.

[34]  Margaret L. Gardel,et al.  Giant dielectric constant response in a copper-titanate , 2000 .

[35]  Arthur W. Sleight,et al.  High Dielectric Constant in ACu3Ti4O12 and ACu3Ti3FeO12 Phases , 2000 .

[36]  V. N. Bondarev,et al.  Electronic conductivity and current instability in superionic crystals , 1995 .

[37]  R. Vargas,et al.  First-order behavior of the 209 K phase transition of RbAg4I5 , 1995 .

[38]  A. Boris,et al.  Interface charge transport and the electronic conductivity of RbAg4I5 solid electrolytes , 1990 .

[39]  H. Looser,et al.  Ag diffusion constant in RbAg4I5 and KAg4I5 determined by pulsed magnetic gradient NMR , 1983 .

[40]  M. Klein,et al.  Raman scattering studies in the solid electrolytes of the RbAg4I5family , 1979 .

[41]  B. Huberman,et al.  Superionic conductors: Transitions, structures, dynamics , 1979 .

[42]  J. Roos,et al.  Evidence for a first-order phase transition at 209 K in the superionic conductor RbAg4I5 , 1978 .

[43]  A. K. Jonscher,et al.  The ‘universal’ dielectric response , 1977, Nature.

[44]  S. Geller Low-temperature phases of the solid electrolyte RbAg 4 I 5 , 1976 .

[45]  M. Salamon,et al.  Evidence for an order-disorder transformation in the solid electrolyte RbAg4I5 , 1976 .

[46]  G. G. Bentle Silver Diffusion in a High‐Conductivity Solid Electrolyte , 1968 .

[47]  B. Owens,et al.  High-Conductivity Solid Electrolytes: MAg4I5 , 1967, Science.

[48]  S. Geller Crystal Structure of the Solid Electrolyte, RbAg4I5 , 1967, Science.

[49]  S. Matsunaga Structural features of superionic phase in AgBr-CuBr system by molecular dynamics simulation , 2009 .

[50]  A. Jonscher Dielectric relaxation in solids , 1983 .