Numerical evaluation of certain hypersingular integrals using refinable operators
暂无分享,去创建一个
[1] P. Rabinowitz. Numerical integration based on approximating splines , 1990 .
[2] Catterina Dagnino,et al. Numerical integration based on quasi-interpolating splines , 1993, Computing.
[3] Qi‐Kui Du,et al. Evaluations of certain hypersingular integrals on interval , 2001 .
[4] Kai Diethelm,et al. Modified compound quadrature rules for strongly singular integrals , 1994, Computing.
[5] Wei-Chang Shann,et al. MATRICES AND QUADRATURE RULES FOR WAVELETS , 1998 .
[6] G. Pólya,et al. Über die Konvergenz von Quadraturverfahren , 1933 .
[7] E. Santi,et al. On the evaluation of Cauchy principal value integrals by rules based on quasi-interpolating splines , 1996 .
[8] Weiwei Sun,et al. Newton-Cotes Formulae for the Numerical Evaluation of Certain Hypersingular Integrals , 2005, Computing.
[9] P. Rabinowitz. Application of approximating splines for the solution of Cauchy singular integral equations , 1994 .
[10] P. Rabinowitz,et al. On the uniform convergence of Cauchy principal values of quasi-interpolating splines , 1995 .
[11] U. Jin Choi,et al. Improvement of the asymptotic behaviour of the Euler–Maclaurin formula for Cauchy principal value and Hadamard finite‐part integrals , 2004 .
[12] David Elliott,et al. Sigmoidal transformations and the Euler-Maclaurin expansion for evaluating certain Hadamard finite-part integrals , 1997 .
[13] Chung-Yuen Hui,et al. EVALUATIONS OF HYPERSINGULAR INTEGRALS USING GAUSSIAN QUADRATURE , 1999 .
[14] Elisabetta Santi,et al. Positive Refinable Operators , 2004, Numerical Algorithms.
[15] Giovanni Monegato,et al. Numerical evaluation of hypersingular integrals , 1994 .
[16] L. Gori,et al. Convergence properties of certain refinable quasi-interpolatory operators , 2005 .