A Cross-Layer Investigation for the Throughput Performance of CSMA/CA-Based WLANs With Directional Antennas and Capture Effect

In this paper, we develop a physical/medium-access-control (PHY/MAC) cross-layer analytical model to investigate the throughput performance of the wireless local-area network (WLAN) in a lossy wireless environment. From the PHY-layer perspective, the developed model incorporates the effects of capture and directional antennas, while from the MAC-layer perspective, our approach takes into account the carrier-sense multiple access with collision-avoidance (CSMA/CA) MAC protocol and the effect of the backoff process in the IEEE 802.11 WLAN. We derive explicit analytical expressions for the frame outage and capture probabilities of a directional antenna system in the presence of shadowing and Rayleigh fading. Applying this analysis, we can model the interaction between the PHY and MAC layers more accurately for the infrastructure-based WLAN. The numerical results show that our analytical model can approach that attained by simulations. The proposed cross-layer analytical model not only provides insights into the PHY layer impacts on the throughput of the CSMA/CA MAC protocol but also indicates to how directional antennas can improve the CSMA/CA-based WLAN in terms of antenna beamwidth and the number of radio transceivers.

[1]  Periklis Chatzimisios,et al.  IEEE 802.11 packet delay-a finite retry limit analysis , 2003, GLOBECOM '03. IEEE Global Telecommunications Conference (IEEE Cat. No.03CH37489).

[2]  Kin K. Leung,et al.  A high-capacity wireless network by quad-sector cell and interleaved channel assignment , 2000, IEEE Journal on Selected Areas in Communications.

[3]  Masao Nakagawa,et al.  Spatially divided channel scheme using sectored antennas for CSMA/CA "directional CSMA/CA" , 2000, 11th IEEE International Symposium on Personal Indoor and Mobile Radio Communications. PIMRC 2000. Proceedings (Cat. No.00TH8525).

[4]  VaraiyaPravin,et al.  Throughput analysis and admission control for IEEE 802.11a , 2005 .

[5]  Chiew Tong Lau,et al.  Capture models for mobile packet radio networks , 1992, IEEE Trans. Commun..

[6]  Robert E. Hiromoto,et al.  A MAC protocol for mobile ad hoc networks using directional antennas , 2000, 2000 IEEE Wireless Communications and Networking Conference. Conference Record (Cat. No.00TH8540).

[7]  Chuan Heng Foh,et al.  Comments on IEEE 802.11 saturation throughput analysis with freezing of backoff counters , 2005, IEEE Communications Letters.

[8]  Michele Zorzi,et al.  Capture and retransmission control in mobile radio , 1994, IEEE J. Sel. Areas Commun..

[9]  Li-Chun Wang,et al.  On the throughput performance of CSMA-based wireless local area network with directional antennas and capture effect: a cross-layer analytical approach , 2004, 2004 IEEE Wireless Communications and Networking Conference (IEEE Cat. No.04TH8733).

[10]  Bruce E. Hajek,et al.  On the capture probability for a large number of stations , 1997, IEEE Trans. Commun..

[11]  Ram Ramanathan,et al.  On the performance of ad hoc networks with beamforming antennas , 2001, MobiHoc '01.

[12]  Yang Xiao,et al.  Saturation performance metrics of the IEEE 802.11 MAC , 2003, 2003 IEEE 58th Vehicular Technology Conference. VTC 2003-Fall (IEEE Cat. No.03CH37484).

[13]  Wen-Tsuen Chen,et al.  An adaptive MAC protocol for wireless ad hoc networks using smart antenna system , 2003, 2003 IEEE 58th Vehicular Technology Conference. VTC 2003-Fall (IEEE Cat. No.03CH37484).

[14]  A. Girotra,et al.  Performance Analysis of the IEEE 802 . 11 Distributed Coordination Function , 2005 .

[15]  Dharma P. Agrawal,et al.  A novel MAC layer protocol for space division multiple access in wireless ad hoc networks , 2002, Proceedings. Eleventh International Conference on Computer Communications and Networks.

[16]  Jun Yang,et al.  MAC protocol for mobile ad hoc network with smart antennas , 2003 .

[17]  Kee Chaing Chua,et al.  A Capacity Analysis for the IEEE 802.11 MAC Protocol , 2001, Wirel. Networks.

[18]  Zoran Hadzi-Velkov,et al.  Saturation throughput - delay analysis of IEEE 802.11 DCF in fading channel , 2003, IEEE International Conference on Communications, 2003. ICC '03..

[19]  Zoran Hadzi-Velkov,et al.  Capture effect in IEEE 802.11 basic service area under influence of Rayleigh fading and near/far effect , 2002, The 13th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications.

[20]  Terence D. Todd,et al.  Ad hoc networks with smart antennas using IEEE 802.11-based protocols , 2002, 2002 IEEE International Conference on Communications. Conference Proceedings. ICC 2002 (Cat. No.02CH37333).

[21]  Aifeng Ren,et al.  Directional virtual carrier sensing for directional antennas in mobile ad hoc networks , 2002, MobiHoc '02.

[22]  J. J. Garcia-Luna-Aceves,et al.  Transmission scheduling in ad hoc networks with directional antennas , 2002, MobiCom '02.

[23]  Yang Xiao,et al.  Concatenation and piggyback mechanisms for the IEEE 802.11 MAC , 2004, 2004 IEEE Wireless Communications and Networking Conference (IEEE Cat. No.04TH8733).

[24]  Yuguang Fang,et al.  Fast collision resolution (FCR) MAC algorithm for wireless local area networks , 2002, Global Telecommunications Conference, 2002. GLOBECOM '02. IEEE.

[25]  Marco Conti,et al.  IEEE 802.11 protocol: design and performance evaluation of an adaptive backoff mechanism , 2000, IEEE Journal on Selected Areas in Communications.

[26]  Pravin Varaiya,et al.  Throughput Analysis and Admission Control for IEEE 802.11a , 2005, Mob. Networks Appl..

[27]  Ieee . Wg Part 11 : Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specification , 2003 .

[28]  Nitin H. Vaidya,et al.  Using directional antennas for medium access control in ad hoc networks , 2002, MobiCom '02.

[29]  J. W. Tantra,et al.  An efficient scheduling scheme for high speed IEEE 802.11 WLANs , 2003, 2003 IEEE 58th Vehicular Technology Conference. VTC 2003-Fall (IEEE Cat. No.03CH37484).

[30]  C. Balanis Antenna theory , 1982 .

[31]  Tamer A. ElBatt,et al.  Performance evaluation of multiple access protocols for ad hoc networks using directional antennas , 2003, 2003 IEEE Wireless Communications and Networking, 2003. WCNC 2003..

[32]  Leandros Tassiulas,et al.  A MAC protocol for full exploitation of directional antennas in ad-hoc wireless networks , 2003, MobiHoc '03.

[33]  M. Zorzi Capture probabilities in random-access mobile communications in the presence of Rician fading , 1997 .

[34]  David Malone,et al.  Modeling the 802.11 distributed coordination function in non-saturated conditions , 2005, IEEE Communications Letters.

[35]  G.L. Stuber,et al.  Architecture design, frequency planning, and performance analysis for a microcell/macrocell overlaying system , 1996, Proceedings of ICC/SUPERCOMM '96 - International Conference on Communications.

[36]  Michele Garetto,et al.  Performance Analysis of 802.11 WLANs Under Sporadic Traffic , 2005, NETWORKING.

[37]  Nitin H. Vaidya,et al.  Explicit and implicit pipelining for wireless medium access control , 2003, 2003 IEEE 58th Vehicular Technology Conference. VTC 2003-Fall (IEEE Cat. No.03CH37484).

[38]  Marco Conti,et al.  Design and performance evaluation of a distributed contention control(DCC) mechanism for IEEE 802.11 wireless local area networks , 1998, WOWMOM '98.

[39]  Yuguang Fang,et al.  Performance Analysis of IEEE 802.11 DCF in Imperfect Channels , 2006, IEEE Transactions on Vehicular Technology.

[40]  Jae-Hyun Kim,et al.  Capture effects of wireless CSMA/CA protocols in Rayleigh and shadow fading channels , 1999 .

[41]  Suresh Singh,et al.  DOA-ALOHA: slotted ALOHA for ad hoc networking using smart antennas , 2003, 2003 IEEE 58th Vehicular Technology Conference. VTC 2003-Fall (IEEE Cat. No.03CH37484).

[42]  J. J. Garcia-Luna-Aceves,et al.  A scalable model for channel access protocols in multihop ad hoc networks , 2004, MobiCom '04.

[43]  Jean-Paul M. G. Linnartz,et al.  Narrowband land-mobile radio networks , 1993 .