Continuous Wave Sum Frequency Generation and Imaging of Monolayer and Heterobilayer Two-Dimensional Semiconductors

We report continuous-wave second harmonic and sum frequency generation from two-dimensional transition metal dichalcogenide monolayers and their heterostructures with pump irradiances several orders of magnitude lower than those of conventional pulsed experiments. The high nonlinear efficiency originates from above-gap excitons in the band nesting regions, as revealed by wavelength-dependent second order optical susceptibilities quantified in four common monolayer transition metal dichalcogenides. Using sum frequency excitation spectroscopy and imaging, we identify and distinguish oneand two-photon resonances in both monolayers and heterobilayers. Data for heterostructures reveal responses from constituent layers accompanied by nonlinear signal correlated with interlayer transitions. We demonstrate spatial mapping of heterogeneous interlayer coupling by sum frequency and second harmonic confocal microscopy on heterobilayer MoSe2/WSe2.

[1]  Xiaodong Xu,et al.  Optical generation of high carrier densities in 2D semiconductor heterobilayers , 2019, Science Advances.

[2]  B. Jonker,et al.  Chemical Identification of Interlayer Contaminants within van der Waals Heterostructures. , 2019, ACS applied materials & interfaces.

[3]  L. Balicas,et al.  Approaching the Intrinsic Limit in Transition Metal Diselenides via Point Defect Control. , 2019, Nano letters.

[4]  Xiaodong Xu,et al.  Giant nonreciprocal second-harmonic generation from antiferromagnetic bilayer CrI3 , 2019, Nature.

[5]  Xiaoyang Zhu,et al.  Direct Determination of Band-Gap Renormalization in the Photoexcited Monolayer MoS_{2}. , 2019, Physical review letters.

[6]  Shiwei Wu,et al.  Chiral selection rules for multi-photon processes in two-dimensional honeycomb materials. , 2019, Optics letters.

[7]  Kenji Watanabe,et al.  Observation of moiré excitons in WSe2/WS2 heterostructure superlattices , 2018, Nature.

[8]  S. Banerjee,et al.  Evidence for moiré excitons in van der Waals heterostructures , 2018, Nature.

[9]  J. R. M. Saavedra,et al.  Optical harmonic generation in monolayer group-VI transition metal dichalcogenides , 2018, Physical Review B.

[10]  B. Jonker,et al.  Nano-"Squeegee" for the Creation of Clean 2D Material Interfaces. , 2018, ACS applied materials & interfaces.

[11]  Double Indirect Interlayer Exciton in a MoSe2/WSe2 van der Waals Heterostructure. , 2018, ACS nano.

[12]  T. Mueller,et al.  Optical imaging of strain in two-dimensional crystals , 2018, Nature Communications.

[13]  Zhongfan Liu,et al.  Monitoring Local Strain Vector in Atomic-Layered MoSe2 by Second-Harmonic Generation. , 2017, Nano letters.

[14]  R. Averitt,et al.  Towards properties on demand in quantum materials. , 2017, Nature materials.

[15]  P. Schuck,et al.  Optically Discriminating Carrier-Induced Quasiparticle Band Gap and Exciton Energy Renormalization in Monolayer MoS_{2}. , 2017, Physical review letters.

[16]  Robert A Norwood,et al.  Rapid visualization of grain boundaries in monolayer MoS2 by multiphoton microscopy , 2017, Nature Communications.

[17]  J. E. Moore,et al.  Giant anisotropic nonlinear optical response in transition metal monopnictide Weyl semimetals , 2016, Nature Physics.

[18]  Tony F. Heinz,et al.  High-harmonic generation from an atomically thin semiconductor , 2016, Nature Physics.

[19]  D. J. Clark,et al.  Nonlinear optical characteristics of monolayer MoSe2 , 2016 .

[20]  Eva A. A. Pogna,et al.  Photo-Induced Bandgap Renormalization Governs the Ultrafast Response of Single-Layer MoS2. , 2016, ACS nano.

[21]  M. Merano Nonlinear optical response of a two-dimensional atomic crystal. , 2015, Optics letters.

[22]  T. Heinz,et al.  Experimental Evidence for Dark Excitons in Monolayer WSe_{2}. , 2015, Physical review letters.

[23]  Yuang Wang,et al.  Nonlinear optical selection rule based on valley-exciton locking in monolayer ws2 , 2015, Light: Science & Applications.

[24]  T. Heinz,et al.  Population inversion and giant bandgap renormalization in atomically thin WS2 layers , 2015, Nature Photonics.

[25]  Aaron M. Jones,et al.  Electrical control of second-harmonic generation in a WSe2 monolayer transistor. , 2015, Nature nanotechnology.

[26]  G. Wang,et al.  Giant enhancement of the optical second-harmonic emission of WSe(2) monolayers by laser excitation at exciton resonances. , 2015, Physical review letters.

[27]  Rajeev Kumar,et al.  Photocarrier relaxation pathway in two-dimensional semiconducting transition metal dichalcogenides , 2014, Nature Communications.

[28]  Zhiwen Liu,et al.  Extraordinary Second Harmonic Generation in Tungsten Disulfide Monolayers , 2014, Scientific Reports.

[29]  Xiang Zhang,et al.  Edge Nonlinear Optics on a MoS2 Atomic Monolayer , 2014, Science.

[30]  Lain-Jong Li,et al.  Second harmonic generation from artificially stacked transition metal dichalcogenide twisted bilayers. , 2014, ACS nano.

[31]  K. L. Shepard,et al.  One-Dimensional Electrical Contact to a Two-Dimensional Material , 2013, Science.

[32]  Yilei Li,et al.  Probing symmetry properties of few-layer MoS2 and h-BN by optical second-harmonic generation. , 2013, Nano letters.

[33]  K. Mak,et al.  Observation of intense second harmonic generation from MoS 2 atomic crystals , 2013, 1304.4289.

[34]  P. Ajayan,et al.  Second harmonic microscopy of monolayer MoS 2 , 2013, 1302.3935.

[35]  L. Chu,et al.  Evolution of electronic structure in atomically thin sheets of WS2 and WSe2. , 2012, ACS nano.

[36]  Ji Feng,et al.  Valley-selective circular dichroism of monolayer molybdenum disulphide , 2012, Nature Communications.

[37]  Wang Yao,et al.  Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. , 2011, Physical review letters.

[38]  Michitoshi Hayashi,et al.  Doubly-resonant sum-frequency generation spectroscopy for surface studies , 2002 .

[39]  K. Hagimoto,et al.  Determination of the second-order susceptibility of ammonium dihydrogen phosphate and α-quartz at 633 and 1064 nm. , 1995, Applied optics.