Evaluation of nitrogen- and silicon-vacancy defect centres as single photon sources in quantum key distribution

We demonstrate a quantum key distribution (QKD) testbed for room temperature single photon sources based on defect centres in diamond. A BB84 protocol over a short free-space transmission line is implemented. The performance of nitrogen-vacancy (NV) as well as silicon-vacancy defect (SiV) centres is evaluated. An extrapolation for the future applicability of such sources in quantum information processing is discussed.

[1]  M. Wahl,et al.  An ultrafast quantum random number generator with provably bounded output bias based on photon arrival time measurements , 2011 .

[2]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[3]  O. Benson,et al.  Ultrabright and efficient single-photon generation based on nitrogen-vacancy centres in nanodiamonds on a solid immersion lens , 2010, 1011.1822.

[4]  N. Lutkenhaus Security against individual attacks for realistic quantum key distribution , 1999, quant-ph/9910093.

[5]  Rainer Erdmann,et al.  Amplification of ps-pulses from freely triggerable gain-switched laser diodes at 1062 nm and second harmonic generation in periodically poled lithium niobate , 2011, LASE.

[6]  Toshiharu Makino,et al.  Electrically driven single-photon source at room temperature in diamond , 2012, Nature Photonics.

[7]  H. Weinfurter,et al.  Experimental Demonstration of Free-Space Decoy-State Quantum Key Distribution over 144 km , 2007, 2007 European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference.

[8]  H. Lo,et al.  Practical Decoy State for Quantum Key Distribution , 2005, quant-ph/0503005.

[9]  S. Prawer,et al.  Single nitrogen vacancy centers in chemical vapor deposited diamond nanocrystals. , 2007, Nano letters (Print).

[10]  Christoph Simon,et al.  Long-Distance Entanglement Distribution with Single-Photon Sources , 2007, 0706.1924.

[11]  Peterson,et al.  Daylight quantum key distribution over 1.6 km , 2000, Physical review letters.

[12]  Jakob Reichel,et al.  Coupling of a single nitrogen-vacancy center in diamond to a fiber-based microcavity. , 2013, Physical review letters.

[13]  P. Grangier,et al.  Single photon quantum cryptography. , 2002, Physical Review Letters.

[14]  H. Lo,et al.  Practical decoy state for quantum key distribution (15 pages) , 2005 .

[15]  Christoph Becher,et al.  Photophysics of single silicon vacancy centers in diamond: implications for single photon emission. , 2012, Optics express.

[16]  University of Cambridge,et al.  Quantum key distribution using a triggered quantum dot source emitting near 1.3μm , 2007, 0710.0565.

[17]  J Wrachtrup,et al.  Optically controlled switching of the charge state of a single nitrogen-vacancy center in diamond at cryogenic temperatures. , 2013, Physical review letters.

[18]  Gilles Brassard,et al.  Quantum cryptography: Public key distribution and coin tossing , 2014, Theor. Comput. Sci..

[19]  A. Greentree,et al.  Photophysics of chromium-related diamond single-photon emitters , 2009, 0909.1873.

[20]  Martin Fischer,et al.  Single photon emission from silicon-vacancy colour centres in chemical vapour deposition nano-diamonds on iridium , 2010, 1008.4736.

[21]  Igor Aharonovich,et al.  Chromium single-photon emitters in diamond fabricated by ion implantation , 2010 .

[22]  H. Weinfurter,et al.  Experimental Demonstration of Free-Space Decoy-State Quantum Key Distribution over 144 km , 2007, 2007 European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference.

[23]  Christoph Pauly,et al.  One- and two-dimensional photonic crystal microcavities in single crystal diamond. , 2011, Nature nanotechnology.

[24]  Christian Schneider,et al.  Quantum key distribution using quantum dot single-photon emitting diodes in the red and near infrared spectral range , 2012 .

[25]  Wolfgang Dür,et al.  Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication , 1998 .

[26]  H. Bechmann-Pasquinucci,et al.  Quantum cryptography , 2001, quant-ph/0101098.

[27]  N. Gregersen,et al.  A highly efficient single-photon source based on a quantum dot in a photonic nanowire , 2010 .

[28]  Gilles Brassard,et al.  Quantum Cryptography , 2005, Encyclopedia of Cryptography and Security.

[29]  R. H. Brown,et al.  A Test of a New Type of Stellar Interferometer on Sirius , 1956, Nature.

[30]  Hugo Zbinden,et al.  What are single photons good for? , 2012, 1202.0493.

[31]  Integrated and compact fiber-coupled single-photon system based on nitrogen-vacancy centers and gradient-index lenses. , 2012, Optics letters.

[32]  M. Markham,et al.  Heralded entanglement between solid-state qubits separated by three metres , 2012, Nature.

[33]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[34]  Oliver Benson,et al.  Plasmon-enhanced single photon emission from a nanoassembled metal-diamond hybrid structure at room temperature. , 2009, Nano letters.

[35]  A R Dixon,et al.  Continuous operation of high bit rate quantum key distribution , 2010, 1005.4573.

[36]  T. Gacoin,et al.  Room temperature stable single-photon source , 2002 .

[37]  Mayer,et al.  Stable solid-state source of single photons , 2000, Physical review letters.

[38]  Sellami Ali,et al.  DECOY STATE QUANTUM KEY DISTRIBUTION , 2010 .

[39]  Matthew Sellars,et al.  Nitrogen-vacancy center in diamond: Model of the electronic structure and associated dynamics , 2006 .

[40]  M. Frimmer,et al.  Nanomechanical method to gauge emission quantum yield applied to nitrogen-vacancy centers in nanodiamond , 2012, 1212.5081.

[41]  Gilles Brassard,et al.  Secret-Key Reconciliation by Public Discussion , 1994, EUROCRYPT.

[42]  John Preskill,et al.  Security of quantum key distribution with imperfect devices , 2002, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[43]  Andreas W. Schell,et al.  Three-dimensional quantum photonic elements based on single nitrogen vacancy-centres in laser-written microstructures , 2012, Scientific Reports.

[44]  Won-Young Hwang Quantum key distribution with high loss: toward global secure communication. , 2003, Physical review letters.

[45]  A. Schell,et al.  Probing the local density of states in three dimensions with a scanning single quantum emitter , 2013, 1303.0814.

[46]  Andreas W. Schell,et al.  Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity , 2010, 1008.3504.

[47]  L. Hollenberg,et al.  Ab initio electronic and optical properties of the N - v- center in diamond. , 2008, Physical review letters.

[48]  Dirk Giggenbach,et al.  Optimierung der optischen Freiraumkommunikation durch die turbulente Atmosphäre - Focal Array Receiver , 2005 .

[49]  P. Grangier,et al.  Experimental open-air quantum key distribution with a single-photon source , 2004, quant-ph/0402110.

[50]  Alois Renn,et al.  A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency , 2011, 2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference (CLEO EUROPE/EQEC).

[51]  Yoshihisa Yamamoto,et al.  Security aspects of quantum key distribution with sub-Poisson light , 2002 .