Rational continuity: parametric, geometric, and Frenet frame continuity of rational curves

The parametric, geometric, or Frenet frame continuity of a rational curve has often been ensured by requiring the homogeneous polynomial curve associated with the rational curve to possess either parametric, geometric, or Frenet frame continuity, respectively. In this paper, we show that this approach is overly restrictive and derive the constraints on the associated homogeneous curve that are both necessary and sufficient to ensure that the rational curve is either parametrically, geometrically, or Frenet frame continuous.

[1]  Yung-chen Lu Singularity Theory and an Introduction to Catastrophe Theory , 1980 .

[2]  Donald Ervin Knuth,et al.  The Art of Computer Programming , 1968 .

[3]  A. H. Fowler,et al.  Cubic Spline, a Curve Fitting Routine , 1963 .

[4]  Anthony D. DeRose Geometric Continuity: A Parameterization Independent Measure of , 1985 .

[5]  Tony DeRose,et al.  Geometric continuity of parametric curves: constructions of geometrically continuous splines , 1990, IEEE Computer Graphics and Applications.

[6]  Donald E. Knuth,et al.  The Art of Computer Programming, Volume I: Fundamental Algorithms, 2nd Edition , 1997 .

[7]  Les A. Piegl,et al.  Infinite Control Points-A Method for Representing Surfaces of Revolution Using Boundary Data , 1987, IEEE Computer Graphics and Applications.

[8]  B. Barsky,et al.  Basic functions for rational continuity , 1990 .

[9]  Dan Cohen,et al.  Fast drawing of curves for computer display , 1969, AFIPS '69 (Spring).

[10]  I. Faux,et al.  Computational Geometry for Design and Manufacture , 1979 .

[11]  Ron Goldman,et al.  On beta-continuous functions and their application to the construction of geometrically continuous curves and surfaces , 1989 .

[12]  Tony DeRose,et al.  Geometric continuity of parametric curves: three equivalent characterizations , 1989, IEEE Computer Graphics and Applications.

[13]  Brian A. Barsky,et al.  Geometric Continuity of Parametric Curves , 1984 .

[14]  Robert E. Barnhill,et al.  Surfaces in computer aided geometric design: a survey with new results , 1985, Comput. Aided Geom. Des..

[15]  T. Goodman Properties of ?-splines , 1985 .

[16]  Nira Dyn,et al.  ON LOCALLY SUPPORTED BASIS FUNCTIONS FOR THE REPRESENTATION OF GEOMETRICALLY CONTINUOUS CURVES , 1987 .

[17]  J. R. Manning Continuity Conditions for Spline Curves , 1974, Comput. J..

[18]  Donald E. Knuth,et al.  The art of computer programming: V.1.: Fundamental algorithms , 1997 .

[19]  Hans Hagen Bezier-curves with curvature and torsion continuity , 1986 .

[20]  Hans Hagen,et al.  Geometric spline curves , 1985, Comput. Aided Geom. Des..

[21]  Kenneth James Versprille Computer-aided design applications of the rational b-spline approximation form. , 1975 .

[22]  L. Piegl,et al.  Curve and surface constructions using rational B-splines , 1987 .

[23]  G. Farin Visually C2 cubic splines , 1982 .

[24]  Wolfgang Böhm Curvature continuous curves and surfaces , 1985, Comput. Aided Geom. Des..

[25]  Les A. Piegl The sphere as a rational Bézier surface , 1986, Comput. Aided Geom. Des..

[26]  Dinesh Manocha,et al.  Varying the Shape Parameters of Rational Continuity , 1991, Curves and Surfaces.

[27]  Wolfgang Böhm Rational geometric splines , 1987, Comput. Aided Geom. Des..

[28]  Nira Dyn,et al.  Piecewise polynomial spaces and geometric continuity of curves , 1989 .

[29]  A. Derose Geometric continuity: a parametrization independent measure of continuity for computer aided geometric design (curves, surfaces, splines) , 1985 .

[30]  Ronald N. Goldman Beta Continuity and Its Application to Rational Beta-splines , 1988 .

[31]  Wayne Tiller,et al.  Rational B-Splines for Curve and Surface Representation , 1983, IEEE Computer Graphics and Applications.

[32]  G. Farin Algorithms for rational Bézier curves , 1983 .

[33]  J. K. Broadbent Microprogramming and System Architecture , 1974, Comput. J..

[34]  Laszlo Piegl,et al.  Representation of quadric primitives by rational polynomials , 1985, Comput. Aided Geom. Des..

[35]  D DeRoseTony,et al.  Parametric Curves, Part Two , 1990 .

[36]  G. Nielson SOME PIECEWISE POLYNOMIAL ALTERNATIVES TO SPLINES UNDER TENSION , 1974 .

[37]  B. Barsky The beta-spline: a local representation based on shape parameters and fundamental geometric measures , 1981 .

[38]  Brian A. Barsky,et al.  Computer Graphics and Geometric Modeling Using Beta-splines , 1988, Computer Science Workbench.

[39]  B. Barsky,et al.  An Intuitive Approach to Geometric Continuity for Parametric Curves and Surfaces (Extended Abstract) , 1985 .

[40]  M. Spivak A comprehensive introduction to differential geometry , 1979 .

[41]  Les A. Piegl,et al.  A geometric investigation of the rational bezier scheme of computer aided design , 1986 .

[42]  Laszlo Piegl,et al.  On the use of infinite control points in CAGD , 1987, Comput. Aided Geom. Des..

[43]  Surendra K. Gupta Parametric splines in tension , 1989 .

[44]  Ron Goldman,et al.  Algebraic aspects of geometric continuity , 1989 .