C9orf72 poly(PR) aggregation in nucleus induces ALS/FTD-related neurodegeneration in cynomolgus monkeys

[1]  D. Sarrut,et al.  From netrin‐1‐targeted SPECT/CT to internal radiotherapy for management of advanced solid tumors , 2023, EMBO molecular medicine.

[2]  Y. Bi,et al.  A comparative study of evaluating missing value imputation methods in label-free proteomics , 2021, Scientific Reports.

[3]  Patricia A. Castruita,et al.  p53 is a central regulator driving neurodegeneration caused by C9orf72 poly(PR) , 2021, Cell.

[4]  Minoru Kanehisa,et al.  KEGG: integrating viruses and cellular organisms , 2020, Nucleic Acids Res..

[5]  L. Petrucelli,et al.  C9orf72 poly(GR) aggregation induces TDP-43 proteinopathy , 2020, Science Translational Medicine.

[6]  Soojin Lee,et al.  Ribosome inhibition by C9ORF72-ALS/FTD-associated poly-PR and poly-GR proteins revealed by cryo-EM , 2020, Nature Communications.

[7]  M. Sena-Esteves,et al.  Purification of Recombinant Adeno-Associated Viruses (rAAVs) by Cesium Chloride Gradient Sedimentation. , 2020, Cold Spring Harbor protocols.

[8]  Vicky L Brandt,et al.  Advances in understanding of Rett syndrome and MECP2 duplication syndrome: prospects for future therapies , 2020, The Lancet Neurology.

[9]  J. Qu,et al.  Generation of a Hutchinson–Gilford progeria syndrome monkey model by base editing , 2020, Protein & Cell.

[10]  Li Yang,et al.  Extracellular Vesicle–Mediated Delivery of Circular RNA SCMH1 Promotes Functional Recovery in Rodent and Nonhuman Primate Ischemic Stroke Models , 2020, Circulation.

[11]  J. Rothstein,et al.  C9orf72 arginine-rich dipeptide repeat proteins disrupt karyopherin-mediated nuclear import , 2020, eLife.

[12]  M. Sena-Esteves,et al.  Production of Recombinant Adeno-Associated Viruses (rAAVs) by Transient Transfection. , 2020, Cold Spring Harbor protocols.

[13]  Guanghui Wang,et al.  Motor dysfunction and neurodegeneration in a C9orf72 mouse line expressing poly-PR , 2019, Nature Communications.

[14]  M. Turner,et al.  CSF chitinase proteins in amyotrophic lateral sclerosis , 2019, Journal of Neurology, Neurosurgery, and Psychiatry.

[15]  L. Petrucelli,et al.  Heterochromatin anomalies and double-stranded RNA accumulation underlie C9orf72 poly(PR) toxicity , 2019, Science.

[16]  K. Fliessbach,et al.  Different neuroinflammatory profile in amyotrophic lateral sclerosis and frontotemporal dementia is linked to the clinical phase , 2018, Journal of Neurology, Neurosurgery, and Psychiatry.

[17]  A. Chiò,et al.  Novel genes associated with amyotrophic lateral sclerosis: diagnostic and clinical implications , 2018, The Lancet Neurology.

[18]  A. Al-Chalabi,et al.  Amyotrophic lateral sclerosis , 2017, The Lancet.

[19]  Dinggang Shen,et al.  Modeling Rett Syndrome Using TALEN-Edited MECP2 Mutant Cynomolgus Monkeys , 2017, Cell.

[20]  S. McKnight,et al.  Toxic PRn poly-dipeptides encoded by the C9orf72 repeat expansion block nuclear import and export , 2017, Proceedings of the National Academy of Sciences.

[21]  D. Geschwind,et al.  Timing and significance of pathological features in C9orf72 expansion-associated frontotemporal dementia. , 2016, Brain : a journal of neurology.

[22]  Robert H. Brown,et al.  Decoding ALS: from genes to mechanism , 2016, Nature.

[23]  S. McKnight,et al.  Toxic PR Poly-Dipeptides Encoded by the C9orf72 Repeat Expansion Target LC Domain Polymers , 2016, Cell.

[24]  D. Underhill,et al.  C9orf72 is required for proper macrophage and microglial function in mice , 2016, Science.

[25]  K. Burke,et al.  The Activators of Cyclin-Dependent Kinase 5 p35 and p39 Are Essential for Oligodendrocyte Maturation, Process Formation, and Myelination , 2016, The Journal of Neuroscience.

[26]  Kevin F. Bieniek,et al.  C9ORF72 repeat expansions in mice cause TDP-43 pathology, neuronal loss, and behavioral deficits , 2015, Science.

[27]  David A. Leopold,et al.  Brains, Genes, and Primates , 2015, Neuron.

[28]  Zhouteng Tao,et al.  Nucleolar stress and impaired stress granule formation contribute to C9orf72 RAN translation-induced cytotoxicity. , 2015, Human molecular genetics.

[29]  Juancarlos Chan,et al.  Gene Ontology Consortium: going forward , 2014, Nucleic Acids Res..

[30]  J. Ule,et al.  Hexanucleotide Repeats in ALS/FTD Form Length-Dependent RNA Foci, Sequester RNA Binding Proteins, and Are Neurotoxic , 2013, Cell reports.

[31]  E. Kremmer,et al.  Bidirectional transcripts of the expanded C9orf72 hexanucleotide repeat are translated into aggregating dipeptide repeat proteins , 2013, Acta Neuropathologica.

[32]  Nipun A. Mistry,et al.  RNA Toxicity from the ALS/FTD C9ORF72 Expansion Is Mitigated by Antisense Intervention , 2013, Neuron.

[33]  E. Rouiller,et al.  Distinction between hand dominance and hand preference in primates: a behavioral investigation of manual dexterity in nonhuman primates (macaques) and human subjects , 2013, Brain and behavior.

[34]  K. High,et al.  Immune responses to AAV vectors: overcoming barriers to successful gene therapy. , 2013, Blood.

[35]  E. Kremmer,et al.  The C9orf72 GGGGCC Repeat Is Translated into Aggregating Dipeptide-Repeat Proteins in FTLD/ALS , 2013, Science.

[36]  H. Bussemaker,et al.  TLS/FUS (translocated in liposarcoma/fused in sarcoma) regulates target gene transcription via single-stranded DNA response elements , 2012, Proceedings of the National Academy of Sciences.

[37]  J. Hardy,et al.  Clinico-pathological features in amyotrophic lateral sclerosis with expansions in C9ORF72. , 2012, Brain : a journal of neurology.

[38]  David Heckerman,et al.  A Hexanucleotide Repeat Expansion in C9ORF72 Is the Cause of Chromosome 9p21-Linked ALS-FTD , 2011, Neuron.

[39]  D. Geschwind,et al.  Expanded GGGGCC Hexanucleotide Repeat in Noncoding Region of C9ORF72 Causes Chromosome 9p-Linked FTD and ALS , 2011, Neuron.

[40]  Gene W. Yeo,et al.  Long pre-mRNA depletion and RNA missplicing contribute to neuronal vulnerability from loss of TDP-43 , 2011, Nature Neuroscience.

[41]  J. Roux,et al.  Progressive motor and respiratory metabolism deficits in post-weaning Mecp2-null male mice , 2011, Behavioural Brain Research.

[42]  R. Chitta,et al.  Global analysis of TDP-43 interacting proteins reveals strong association with RNA splicing and translation machinery. , 2010, Journal of proteome research.

[43]  I. Niebroj-Dobosz,et al.  Matrix metalloproteinases and their tissue inhibitors in serum and cerebrospinal fluid of patients with amyotrophic lateral sclerosis , 2010, European journal of neurology.

[44]  E. Masliah,et al.  Widespread changes in dendritic and axonal morphology in Mecp2‐mutant mouse models of rett syndrome: Evidence for disruption of neuronal networks , 2009, The Journal of comparative neurology.

[45]  G. Kollias,et al.  Onset and Progression in Inherited ALS Determined by Motor Neurons and Microglia , 2006, Science.

[46]  D. Borchelt,et al.  Superoxide dismutase is an abundant component in cell bodies, dendrites, and axons of motor neurons and in a subset of other neurons. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[47]  Rodney C. Samaco,et al.  Female Mecp2(+/-) mice display robust behavioral deficits on two different genetic backgrounds providing a framework for pre-clinical studies. , 2013, Human molecular genetics.

[48]  A. Ludolph,et al.  Amyotrophic lateral sclerosis. , 2012, Current opinion in neurology.

[49]  Keun-Joon Park,et al.  Nucleic Acids Research Advance Access published May 21, 2007 WoLF PSORT: protein localization predictor , 2007 .

[50]  D. Armstrong Neuropathology of Rett syndrome. , 2002, Mental retardation and developmental disabilities research reviews.

[51]  John D. Storey,et al.  Bioinformatics Applications Note Gene Expression the Sva Package for Removing Batch Effects and Other Unwanted Variation in High-throughput Experiments , 2022 .