The least symmetric crystallographic derivative of the developable double corrugation surface: Computational design using underlying conic and cubic curves

[1]  Yoshimaru Yoshimura On the Mechanism of Buckling of a Circular Cylindrical Shell Under Axial Compression , 1955 .

[2]  Koryo Miura,et al.  Proposition of Pseudo-Cylindrical Concave Polyhedral Shells , 1969 .

[3]  Koryo Miura,et al.  Method of Packaging and Deployment of Large Membranes in Space , 1985 .

[4]  Kunihiko Kasahara,et al.  Origami for the Connoisseur , 1987 .

[5]  T. Hahn,et al.  International Tables for Crystallography: Volume A: Space-Group Symmetry , 1987 .

[6]  Toshikazu Kawasaki On relation between mountain-creases and valley -creases of a flat origami , 1990 .

[7]  Thomas C. Hull On the Mathematics of Flat Origamis , 1994 .

[8]  Robin J. Wootton,et al.  Two basic mechanisms in insect wing folding , 1996, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[9]  Joseph S. B. Mitchell,et al.  Folding flat silhouettes and wrapping polyhedral packages: New results in computational origami , 2000, Comput. Geom..

[10]  F. Haas,et al.  Wing Folding in Insects: A Natural, Deployable Structure , 2000 .

[11]  Thomas C. Hull,et al.  Modelling the folding of paper into three dimensions using affine transformations , 2002 .

[12]  Taketoshi Nojima,et al.  Modelling of folding patterns in flat membranes and cylinders by Origami , 2002 .

[13]  Daniel H. Huson,et al.  The Orbifold Notation for Two-Dimensional Groups , 2002 .

[14]  K. Kuribayashi,et al.  Self-deployable origami stent grafts as a biomedical application of Ni-rich TiNi shape memory alloy foil , 2006 .

[15]  Erik D. Demaine,et al.  Geometric folding algorithms - linkages, origami, polyhedra , 2007 .

[16]  Robert J. Lang,et al.  From flapping birds to space telescopes: the modern science of origami , 2008, NPAR.

[17]  Koryo Miura,et al.  The Science of Miura-Ori: A Review , 2009 .

[18]  P. Pámies Design rules for superlattices , 2011 .

[19]  Robert Lang,et al.  Every Spider Web Has a Simple Flat Twist Tessellation , 2011 .

[20]  Kuribayashi-Shigetomi Kaori Medical Applications of Origami Engineering -Applications of origami folding techniques for medical devices and regenerative medicine- , 2013 .

[21]  K. Kuribayashi-Shigetomi Medical Applications of Origami Engineering , 2013 .

[22]  Donghwa Jeong,et al.  OrigamiBot-I: A thread-actuated origami robot for manipulation and locomotion , 2014, 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[23]  Goran Konjevod,et al.  Origami based Mechanical Metamaterials , 2014, Scientific Reports.

[24]  Samuel M. Felton,et al.  A method for building self-folding machines , 2014, Science.

[25]  Simon D. Guest,et al.  Designing Symmetric Derivatives of the Miura-ori , 2014, AAG.

[26]  Pedro M Reis,et al.  Transforming architectures inspired by origami , 2015, Proceedings of the National Academy of Sciences.

[27]  P. Sareh,et al.  Design of isomorphic symmetric descendants of the Miura-ori , 2015 .

[28]  Hongzhi Wang,et al.  Origami-inspired active graphene-based paper for programmable instant self-folding walking devices , 2015, Science Advances.

[29]  Simon D. Guest,et al.  A Framework for the Symmetric Generalisation of the Miura-ori , 2015 .

[30]  P. Sareh,et al.  Design of non-isomorphic symmetric descendants of the Miura-ori , 2015 .

[31]  Robert J. Wood,et al.  Origami-Inspired Printed Robots , 2015, IEEE/ASME Transactions on Mechatronics.

[32]  David Lentink,et al.  Folding in and out: passive morphing in flapping wings , 2015, Bioinspiration & biomimetics.

[33]  Ryan L. Harne,et al.  Origami acoustics: using principles of folding structural acoustics for simple and large focusing of sound energy , 2016 .

[34]  George M. Whitesides,et al.  A three-dimensional actuated origami-inspired transformable metamaterial with multiple degrees of freedom , 2016, Nature Communications.

[35]  Richard J. Malak,et al.  The State of the Art of Origami-Inspired Products: A Review , 2016 .

[36]  Jie-Long He,et al.  Opto-Microfluidic Immunosensors: From Colorimetric to Plasmonic , 2016, Micromachines.

[37]  Daniela Rus,et al.  Robotic metamorphosis by origami exoskeletons , 2017, Science Robotics.

[38]  Amir A. Zadpoor,et al.  Programming the shape-shifting of flat soft matter: from self-rolling/self-twisting materials to self-folding origami , 2016 .

[39]  Yue Chen,et al.  Fabricating biomedical origami: a state-of-the-art review , 2017, International Journal of Computer Assisted Radiology and Surgery.

[40]  Esther Rivas-Adrover,et al.  A New Hybrid Type of Deployable Structure: Origami-scissor Hinged , 2018, Journal of the International Association for Shell and Spatial Structures.

[41]  Esther Rivas-Adrover ORIGAMI-SCISSOR Hinged Geometry Method , 2018 .

[42]  Kon-Well Wang,et al.  Programmable Self‐Locking Origami Mechanical Metamaterials , 2018, Advanced materials.

[43]  Mirko Kovac,et al.  The spinning cyclic ‘Miura-oRing’ for mechanical collision-resilience , 2018 .

[44]  Mirko Kovac,et al.  Rotorigami: A rotary origami protective system for robotic rotorcraft , 2018, Science Robotics.

[45]  Jian Feng,et al.  An Integrated Geometric-Graph-Theoretic Approach to Representing Origami Structures and Their Corresponding Truss Frameworks , 2019, Journal of Mechanical Design.